
Recap Hoare Logic Predicate Transformers

COL874: Advanced Compiler Techniques
Modules 186-190

Arpit Saxena

11 November 2021



Recap Hoare Logic Predicate Transformers

1 Recap

2 Hoare Logic

3 Predicate Transformers



Recap Hoare Logic Predicate Transformers

Hoare Logic

1 Assignment Rule: {P[x:=e]} x:=e {P}

2 Composition Rule
{P} C1 {R} {R} C2 {Q}

{P} C1; C2 {Q}
3 if-then-else rule

{P ∧ b} C1 {Q} {P ∧ ¬b} C2 {Q}
{P} if b then C1 else C2 {Q}

4 Consequence rule
(P =⇒ P’) {P’} C {Q’} (Q’ =⇒ Q)

{P} C {Q}



Recap Hoare Logic Predicate Transformers

Hoare Logic

1 Assignment Rule: {P[x:=e]} x:=e {P}
2 Composition Rule

{P} C1 {R} {R} C2 {Q}
{P} C1; C2 {Q}

3 if-then-else rule
{P ∧ b} C1 {Q} {P ∧ ¬b} C2 {Q}

{P} if b then C1 else C2 {Q}
4 Consequence rule

(P =⇒ P’) {P’} C {Q’} (Q’ =⇒ Q)
{P} C {Q}



Recap Hoare Logic Predicate Transformers

Hoare Logic

1 Assignment Rule: {P[x:=e]} x:=e {P}
2 Composition Rule

{P} C1 {R} {R} C2 {Q}
{P} C1; C2 {Q}

3 if-then-else rule
{P ∧ b} C1 {Q} {P ∧ ¬b} C2 {Q}

{P} if b then C1 else C2 {Q}

4 Consequence rule
(P =⇒ P’) {P’} C {Q’} (Q’ =⇒ Q)

{P} C {Q}



Recap Hoare Logic Predicate Transformers

Hoare Logic

1 Assignment Rule: {P[x:=e]} x:=e {P}
2 Composition Rule

{P} C1 {R} {R} C2 {Q}
{P} C1; C2 {Q}

3 if-then-else rule
{P ∧ b} C1 {Q} {P ∧ ¬b} C2 {Q}

{P} if b then C1 else C2 {Q}
4 Consequence rule

(P =⇒ P’) {P’} C {Q’} (Q’ =⇒ Q)
{P} C {Q}



Recap Hoare Logic Predicate Transformers

Hoare Logic Rule for while

5 While rule:
{P ∧ b} C {P}

{P} while(b) C {P ∧ ¬b}
Here, P is a loop invariant.

Example
{x ≥ 0}

// P

while x ̸= 0

// b

x := x - 1
{x = 0}

// Q

From the inference rule:
{x ≥ 0 ∧ x ̸= 0} x := x - 1 {x ≥ 0}



Recap Hoare Logic Predicate Transformers

Hoare Logic Rule for while

5 While rule:
{P ∧ b} C {P}

{P} while(b) C {P ∧ ¬b}
Here, P is a loop invariant.

Example
{x ≥ 0}

// P

while x ̸= 0

// b

x := x - 1
{x = 0}

// Q

From the inference rule:
{x ≥ 0 ∧ x ̸= 0} x := x - 1 {x ≥ 0}



Recap Hoare Logic Predicate Transformers

Hoare Logic Rule for while

5 While rule:
{P ∧ b} C {P}

{P} while(b) C {P ∧ ¬b}
Here, P is a loop invariant.

Example
{x ≥ 0} // P
while x ̸= 0 // b
x := x - 1
{x = 0} // Q

From the inference rule:
{x ≥ 0 ∧ x ̸= 0} x := x - 1 {x ≥ 0}



Recap Hoare Logic Predicate Transformers

Hoare Logic Rule for while

Example
{(sum = 0) ∧ (n0 ≥ 0) ∧ (n = n0}
while (n != 0) {
sum := sum + n;
n := n - 1;
}
{sum = n0(n0 + 1)/2}



Recap Hoare Logic Predicate Transformers

Hoare Logic Rule for while

Example
Try to pattern match:
{(sum = 0) ∧ (n0 ≥ 0) ∧ (n = n0} // P
while (n != 0) {
sum := sum + n;
n := n - 1;
}
{sum = n0(n0 + 1)/2} // Q



Recap Hoare Logic Predicate Transformers

Hoare Logic Rule for while

Example
{(sum = 0) ∧ (n0 ≥ 0) ∧ (n = n0} // P
while (n != 0) {
sum := sum + n;
n := n - 1;
}
{sum = n0(n0 + 1)/2} // Q

Q’ = P ∧ ¬b = {(sum = 0) ∧ ((n = n0) ≥ 0) ∧ (n = 0)}
Clearly, Q’ =⇒ sum = n0(n0+1)/2
So can try to prove with postcondition Q’ ⇐⇒ (sum = 0 ∧ n
= 0 ∧ n0 = 0), which is not a loop invariant and can be shown
formally.



Recap Hoare Logic Predicate Transformers

Hoare Logic Rule for while

Example
{(sum = 0) ∧ (n0 ≥ 0) ∧ (n = n0} // P
while (n != 0) {
sum := sum + n;
n := n - 1;
}
{sum = n0(n0 + 1)/2} // Q

So we need to find P’ such that
{P’ ∧ b}
sum := sum + n;
n := n - 1;
{P’}
and P =⇒ P’ and P’ ∧ ¬b =⇒ Q



Recap Hoare Logic Predicate Transformers

Hoare Logic Rule for while

Example
{(sum = 0) ∧ (n0 ≥ 0) ∧ (n = n0} // P
while (n != 0) {
sum := sum + n;
n := n - 1;
}
{sum = n0(n0 + 1)/2} // Q

It can be shown formally that P’ : sum = (n0-n)(n0+n+1)/2
works.



Recap Hoare Logic Predicate Transformers

Finding the required P’ (or Q’)

Soundness: No erroneous fact can be derived by Hoare logic.
Completeness: All true facts can be derived by Hoare logic.

Theorem (Godel Incompleteness Theorem)
If the first-order logic includes arithmetic, there exists no complete
axiomatisation of =⇒ in the consequence rule.

In simpler words, not always possible to find the required P’. So,
Hoare logic is incomplete.



Recap Hoare Logic Predicate Transformers

Finding the required P’ (or Q’)

Soundness: No erroneous fact can be derived by Hoare logic.
Completeness: All true facts can be derived by Hoare logic.

Theorem (Godel Incompleteness Theorem)
If the first-order logic includes arithmetic, there exists no complete
axiomatisation of =⇒ in the consequence rule.

In simpler words, not always possible to find the required P’. So,
Hoare logic is incomplete.



Recap Hoare Logic Predicate Transformers

Relative Completeness

All true facts can be derived by Hoare logic provided:
The first order assertion language is rich enough to express
loop invariants
All first-order theorems needed in the consequence rules are
given.



Recap Hoare Logic Predicate Transformers

Introduction

Hoare logic is presented as a deductive system. We don’t have
any strategy to build the deductions

Weakest Preconditions and Strongest Postconditions are
complete strategies to build valid Hoare logic deductions



Recap Hoare Logic Predicate Transformers

Introduction

Hoare logic is presented as a deductive system. We don’t have
any strategy to build the deductions
Weakest Preconditions and Strongest Postconditions are
complete strategies to build valid Hoare logic deductions



Recap Hoare Logic Predicate Transformers

Introduction

Hoare logic is presented as a deductive system. We don’t have
any strategy to build the deductions
Weakest Preconditions and Strongest Postconditions are
complete strategies (assuming invariants are provided by the
programmer) to build valid Hoare logic deductions



Recap Hoare Logic Predicate Transformers

Weakest Preconditions

For a statement S and a postcondition R, a weakest precondition is
a predicate Q such that for a any precondition P:

{P} S {R} ⇐⇒ (P =⇒ Q)

Theorem (Uniqueness of Weakest Precondition)
If both Q and Q’ are weakest preconditions, then by definition:
{Q} S {R} holds =⇒ (Q’ =⇒ Q)
{Q’} S {R} holds =⇒ (Q =⇒ Q’)
=⇒ Q = Q’



Recap Hoare Logic Predicate Transformers

Weakest Preconditions

For a statement S and a postcondition R, a weakest precondition is
a predicate Q such that for a any precondition P:

{P} S {R} ⇐⇒ (P =⇒ Q)

Theorem (Uniqueness of Weakest Precondition)
If both Q and Q’ are weakest preconditions, then by definition:
{Q} S {R} holds =⇒ (Q’ =⇒ Q)

{Q’} S {R} holds =⇒ (Q =⇒ Q’)
=⇒ Q = Q’



Recap Hoare Logic Predicate Transformers

Weakest Preconditions

For a statement S and a postcondition R, a weakest precondition is
a predicate Q such that for a any precondition P:

{P} S {R} ⇐⇒ (P =⇒ Q)

Theorem (Uniqueness of Weakest Precondition)
If both Q and Q’ are weakest preconditions, then by definition:
{Q} S {R} holds =⇒ (Q’ =⇒ Q)
{Q’} S {R} holds =⇒ (Q =⇒ Q’)

=⇒ Q = Q’



Recap Hoare Logic Predicate Transformers

Weakest Preconditions

For a statement S and a postcondition R, a weakest precondition is
a predicate Q such that for a any precondition P:

{P} S {R} ⇐⇒ (P =⇒ Q)

Theorem (Uniqueness of Weakest Precondition)
If both Q and Q’ are weakest preconditions, then by definition:
{Q} S {R} holds =⇒ (Q’ =⇒ Q)
{Q’} S {R} holds =⇒ (Q =⇒ Q’)
=⇒ Q = Q’



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

Notation: wp(S, R) denotes the weakest precondition for
statement S and postcondition R.

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule

wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule

wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule

Example
wp(x := x - 5, x > 10) = (x > 10)[x ← x - 5]

wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule

Example
wp(x := x - 5, x > 10) = x - 5 > 10

wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule

Example
wp(x := x - 5, x > 10) = x > 15

wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule

wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule

Example
wp(x := x - 5; x := x * 2, x > 20)

wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule

Example
wp(x := x - 5; x := x * 2, x > 20)
= wp(x := x - 5, wp(x := x * 2, x > 20))

wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule

Example
wp(x := x - 5; x := x * 2, x > 20)
= wp(x := x - 5, x * 2 > 20)

wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule

Example
wp(x := x - 5; x := x * 2, x > 20)
= (x - 5) * 2 > 20

wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule

Example
wp(x := x - 5; x := x * 2, x > 20)
⇐⇒ x > 15

wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule

Example
wp(if x < y then x := y else skip, x >= y)



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule

Example
wp(if x < y then x := y else skip, x >= y)
= ((x < y) =⇒ wp(x := y, x >= y)) ∧ ((x >= y) =⇒
wp(skip, x >= y)



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule

Example
wp(if x < y then x := y else skip, x >= y)
= ((x < y) =⇒ wp(x := y, x >= y)) ∧ ((x >= y) =⇒
x >= y)



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule

Example
wp(if x < y then x := y else skip, x >= y)
= ((x < y) =⇒ y >= y)) ∧ ((x >= y) =⇒ x >= y)



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule

Example
wp(if x < y then x := y else skip, x >= y)
= ((x < y) =⇒ true)) ∧ true



Recap Hoare Logic Predicate Transformers

Weakest Precondition Rules

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R) Conditional Rule

Example
wp(if x < y then x := y else skip, x >= y)
= true



Recap Hoare Logic Predicate Transformers

Precondition Semantics

{?} S {R}

We want to find a predicate just prior to the execution of S such
that:

Option 1: If S terminates, then R holds.
Option 2: S terminates and R holds.



Recap Hoare Logic Predicate Transformers

Precondition Semantics

{?} S {R}

We want to find a predicate just prior to the execution of S such
that:

Option 1: If S terminates, then R holds.

Option 2: S terminates and R holds.



Recap Hoare Logic Predicate Transformers

Precondition Semantics

{?} S {R}

We want to find a predicate just prior to the execution of S such
that:

Option 1: If S terminates, then R holds.
completes execution and control reaches the PC just after S

Option 2: S terminates and R holds.



Recap Hoare Logic Predicate Transformers

Precondition Semantics

{?} S {R}

We want to find a predicate just prior to the execution of S such
that:

Option 1: If S terminates, then R holds.
Option 2: S terminates and R holds.



Recap Hoare Logic Predicate Transformers

Precondition Semantics

{?} S {R}

We want to find a predicate just prior to the execution of S such
that:

Option 1: If S terminates, then R holds.
Written as {?} S {R} Hoare triple for partial correctness
Option 2: S terminates and R holds.
Written as [?] S [R] Hoare triple for total correctness



Recap Hoare Logic Predicate Transformers

Precondition Semantics

{?} S {R}

We want to find a predicate just prior to the execution of S such
that:

Option 1: If S terminates, then R holds.
Written as {?} S {R} Hoare triple for partial correctness
Weakest Liberal Precondition (wlp)
Option 2: S terminates and R holds.
Written as [?] S [R] Hoare triple for total correctness
Weakest Precondition (wp)



Recap Hoare Logic Predicate Transformers

Precondition Semantics

{?} S {R}

We want to find a predicate just prior to the execution of S such
that:

Option 1: If S terminates, then R holds.
Written as {?} S {R} Hoare triple for partial correctness
Weakest Liberal Precondition (wlp)
Option 2: S terminates and R holds.
Written as [?] S [R] Hoare triple for total correctness
Weakest Precondition (wp)

We can observe that wp =⇒ wlp



Recap Hoare Logic Predicate Transformers

Common rules for WP and WLP

wp(skip, R) = R Skip Rule
wp(x := e, R) = R[x ← e] Assignment Rule
wp(S1; S2, R = wp(S1, wp(S2, R)) Sequence Rule
wp(if e then S1 else S2, R) = (e =⇒ wp(S1, R))
∧ (¬e =⇒ wp(S2, R)) Conditional Rule



Recap Hoare Logic Predicate Transformers

Common rules for WP and WLP

wlp(skip, R) = R Skip Rule
wlp(x := e, R) = R[x ← e] Assignment Rule
wlp(S1; S2, R = wp(S1, wlp(S2, R)) Sequence Rule
wlp(if e then S1 else S2, R) = (e =⇒ wlp(S1,
R)) ∧ (¬e =⇒ wlp(S2, R)) Conditional Rule



Recap Hoare Logic Predicate Transformers

Abort WP Rule

abort aborts the program, so control doesn’t reach the PC after
it. So by our definition, it is non-terminating.

wp(abort, R) = false wlp(abort, R) = true

Example
wp(x := y/z, y = x*z) = (z != 0)
wlp(x := y/z, y = x*z) = true
Note that this is assuming division by zero causes abort.



Recap Hoare Logic Predicate Transformers

Abort WP Rule

abort aborts the program, so control doesn’t reach the PC after
it. So by our definition, it is non-terminating.

wp(abort, R) = false wlp(abort, R) = true

Example
wp(x := y/z, y = x*z) = (z != 0)
wlp(x := y/z, y = x*z) = true
Note that this is assuming division by zero causes abort.



Recap Hoare Logic Predicate Transformers

Abort WP Rule

abort aborts the program, so control doesn’t reach the PC after
it. So by our definition, it is non-terminating.

wp(abort, R) = false wlp(abort, R) = true

Example
wp(x := y/z, y = x*z) = (z != 0)
wlp(x := y/z, y = x*z) = true
Note that this is assuming division by zero causes abort.



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Now, we want to find wlp(while(e) S, R).

In general, both wp and wlp are undecidable.



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Now, we want to find wlp(while(e) S, R).

In general, both wp and wlp are undecidable.
Because of the halting problem



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Now, we want to find wlp(while(e) S, R).

In general, both wp and wlp are undecidable.
Because we want the weakest such condition, we have to find the
loop invariant, which is undecidable.



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

We need a loop invariant I such that
I should hold in the beginning
{I ∧ e} S {I} holds
{I ∧ ¬e} skip {R} holds



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

We need a loop invariant I such that
I should hold in the beginning (Initial state x)
{I ∧ e} S {I} holds
{I ∧ ¬e} skip {R} holds

}
(For all possible states y)



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

We need a loop invariant I such that
I should hold in the beginning (Initial state x)
{I ∧ e} S {I} holds
{I ∧ ¬e} skip {R} holds

}
(For all possible states y)

wlp(while(e) S, R)
= I
∧ ∀y ((I ∧ e) =⇒ wlp(S, I))[x ← y]
∧ ∀y ((I ∧ ¬e) =⇒ R)[x ← y]
We are interested in the weakest such I.



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x = -1



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x = -1
Not a precondition because does not statisfy:
∀y ((I ∧ ¬e) =⇒ R)[x ← y]



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x = -1
Not a precondition because does not statisfy:
∀y ((x = -1 ∧ x <= 0) =⇒ x = 0)[x ← y]



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x = -1
Not a precondition because does not statisfy:
∀y ((y = -1 ∧ y <= 0) =⇒ y = 0)



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x = -1
Not a precondition because does not statisfy:
∀y ((y = -1 ∧ y <= 0) =⇒ y = 0) ✗Not provable



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x > 1



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x > 1
Does not satisfy:
∀y ((I ∧ e) =⇒ wlp(S, I))[x ← y]



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x > 1
Does not satisfy:
∀y ((x > 1 ∧ x > 0) =⇒ wlp(x := x - 1, x > 1))[x ←
y]



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x > 1
Does not satisfy:
∀y (x > 1 ∧ x > 0) =⇒ x-1 > 1)[x ← y]



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x > 1
Does not satisfy:
∀y (y > 1 ∧ y > 0) =⇒ y-1 > 1)



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x > 1
Does not satisfy:
∀y (y > 1 ∧ y > 0) =⇒ y-1 > 1) ✗Not provable



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x >= 0



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x >= 0
Satisfies both:

∀y ((I ∧ e) =⇒ wlp(S, I))[x ← y]

∀y ((I ∧ ¬e) =⇒ R)[x ← y]



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x >= 0
Satisfies both:

∀y ((I ∧ e) =⇒ wlp(S, I))[x ← y]
∀y (y >= 0 ∧ y > 0) =⇒ y - 1 >= 0

∀y ((I ∧ ¬e) =⇒ R)[x ← y]



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x >= 0
Satisfies both:

∀y ((I ∧ e) =⇒ wlp(S, I))[x ← y]
∀y (y >= 0 ∧ y > 0) =⇒ y - 1 >= 0
Provable

∀y ((I ∧ ¬e) =⇒ R)[x ← y]



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x >= 0
Satisfies both:

∀y ((I ∧ e) =⇒ wlp(S, I))[x ← y]
∀y (y >= 0 ∧ y > 0) =⇒ y - 1 >= 0
Provable
∀y ((I ∧ ¬e) =⇒ R)[x ← y]



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x >= 0
Satisfies both:

∀y ((I ∧ e) =⇒ wlp(S, I))[x ← y]
∀y (y >= 0 ∧ y > 0) =⇒ y - 1 >= 0
Provable
∀y ((I ∧ ¬e) =⇒ R)[x ← y]
∀y (y >= 0 ∧ y <= 0) =⇒ y = 0



Recap Hoare Logic Predicate Transformers

Partial Correctness of while loop

Example
wlp(while(x > 0) x--, {x == 0}) == ?

Candidate I: x >= 0
Satisfies both:

∀y ((I ∧ e) =⇒ wlp(S, I))[x ← y]
∀y (y >= 0 ∧ y > 0) =⇒ y - 1 >= 0
Provable
∀y ((I ∧ ¬e) =⇒ R)[x ← y]
∀y (y >= 0 ∧ y <= 0) =⇒ y = 0
Provable


	Recap
	Hoare Logic
	Predicate Transformers

