COL874: Advanced Compiler Techniques

Modules 186-190

Arpit Saxena

11 November 2021
(2) Hoare Logic

3 Predicate Transformers

Hoare Logic

(1) Assignment Rule: $\{P[x:=e]\}$ x:=e $\{P\}$

Hoare Logic

(1) Assignment Rule: $\{P[x:=e]\}$ x:=e $\{P\}$
(2) Composition Rule

$$
\frac{\{\mathrm{P}\} C_{1}\{\mathrm{R}\}}{\{\mathrm{P}\} C_{1} ; C_{2}\{\mathrm{Q}\}} C_{2}\{\mathrm{Q}\}
$$

Hoare Logic

(1) Assignment Rule: $\{P[x:=e]\}$ x:=e $\{P\}$
(2) Composition Rule

$$
\frac{\{\mathrm{P}\} C_{1}\{\mathrm{R}\}}{\{\mathrm{P}\} C_{1} ; C_{2}\{\mathrm{Q}\}} C_{2}\{\mathrm{Q}\}
$$

(3) if-then-else rule

$$
\frac{\{\mathrm{P} \wedge \mathrm{~b}\} C_{1}\{\mathrm{Q}\} \quad\{\mathrm{P} \wedge \neg b\} C_{2}\{\mathrm{Q}\}}{\{\mathrm{P}\} \text { if } \mathrm{b} \text { then } C_{1} \text { else } C_{2}\{\mathrm{Q}\}}
$$

Hoare Logic

(1) Assignment Rule: $\{P[x:=e]\}$ x:=e $\{P\}$
(2) Composition Rule

$$
\frac{\{\mathrm{P}\} C_{1}\{\mathrm{R}\}}{\{\mathrm{P}\} C_{1} ; C_{2}\{\mathrm{Q}\}} C_{2}\{\mathrm{Q}\}
$$

(3) if-then-else rule

$$
\frac{\{\mathrm{P} \wedge \mathrm{~b}\} C_{1}\{\mathrm{Q}\} \quad\{\mathrm{P} \wedge \neg b\} C_{2}\{\mathrm{Q}\}}{\{\mathrm{P}\} \text { if } \mathrm{b} \text { then } C_{1} \text { else } C_{2}\{\mathrm{Q}\}}
$$

(1) Consequence rule

$$
\frac{\left(P \Longrightarrow P^{\prime}\right) \quad\left\{P^{\prime}\right\} C\left\{Q^{\prime}\right\}}{\{P\} C\{Q\}}
$$

Hoare Logic Rule for while

5 While rule:

$$
\frac{\{\mathrm{P} \wedge \mathrm{~b}\} \mathrm{C}\{\mathrm{P}\}}{\{\mathrm{P}\} \text { while }(\mathrm{b}) \mathrm{C}\{\mathrm{P} \wedge \neg b\}}
$$

Here, P is a loop invariant.

Hoare Logic Rule for while

5 While rule:

$$
\frac{\{\mathrm{P} \wedge \mathrm{~b}\} \mathrm{C}\{\mathrm{P}\}}{\{\mathrm{P}\} \text { while }(\mathrm{b}) \mathrm{C}\{\mathrm{P} \wedge \neg b\}}
$$

Here, P is a loop invariant.

```
Example
\(\{x \geq 0\}\)
while \(\mathrm{x} \neq 0\)
x := x - 1
\(\{x=0\}\)
```


Hoare Logic Rule for while

5 While rule:

$$
\frac{\{\mathrm{P} \wedge \mathrm{~b}\} \mathrm{C}\{\mathrm{P}\}}{\{\mathrm{P}\} \text { while }(\mathrm{b}) \mathrm{C}\{\mathrm{P} \wedge \neg b\}}
$$

Here, P is a loop invariant.

```
Example
\(\{x \geq 0\} / / P\)
while \(x \neq 0 / / b\)
x := \(\mathrm{x}-1\)
\(\{x=0\} / / Q\)
```

From the inference rule:
$\{\mathrm{x} \geq 0 \wedge \mathrm{x} \neq 0\} \mathrm{x}:=\mathrm{x}-1\{\mathrm{x} \geq 0\}$

Hoare Logic Rule for while

```
Example
{(sum = 0) ^( (n0 \geq 0) ^(n = no}
while (n != 0) {
sum := sum + n;
n := n - 1;
}
{sum = no(no + 1)/2}
```


Hoare Logic Rule for while

Example

Try to pattern match:

$$
\begin{aligned}
& \left\{(\text { sum }=0) \wedge\left(n_{0} \geq 0\right) \wedge\left(\mathrm{n}=n_{0}\right\} / / \mathrm{P}\right. \\
& \text { while }(\mathrm{n}!=0)\{ \\
& \text { sum }:=\text { sum }+\mathrm{n} ; \\
& \mathrm{n}:=\mathrm{n}-1 ; \\
& \} \\
& \text { \{sum } \left.=n_{0}\left(n_{0}+1\right) / 2\right\} / / \mathrm{Q}
\end{aligned}
$$

Hoare Logic Rule for while

```
Example
\(\left\{(\right.\) sum \(=0) \wedge\left(n_{0} \geq 0\right) \wedge\left(\mathrm{n}=n_{0}\right\} / / \mathrm{P}\)
while (n ! = 0) \{
sum := sum + n;
\(\mathrm{n}:=\mathrm{n}-1\);
\}
\(\left\{\right.\) sum \(\left.=n_{0}\left(n_{0}+1\right) / 2\right\} / / \mathrm{Q}\)
\(Q^{\prime}=P \wedge \neg b=\left\{(\right.\) sum \(\left.=0) \wedge\left(\left(\mathrm{n}=n_{0}\right) \geq 0\right) \wedge(\mathrm{n}=0)\right\}\)
Clearly, Q' \(\Longrightarrow\) sum \(=n_{0}\left(n_{0}+1\right) / 2\)
So can try to prove with postcondition \(Q^{\prime} \Longleftrightarrow\) (sum \(=0 \wedge n\)
\(=0 \wedge n_{0}=0\) ), which is not a loop invariant and can be shown formally.
```


Hoare Logic Rule for while

```
Example
\(\left\{(\right.\) sum \(=0) \wedge\left(n_{0} \geq 0\right) \wedge\left(\mathrm{n}=n_{0}\right\} / / \mathrm{P}\)
while ( \(\mathrm{n}!=0\) ) \{
sum := sum + \(n\);
\(\mathrm{n}:=\mathrm{n}-1\);
\}
\(\left\{\right.\) sum \(\left.=n_{0}\left(n_{0}+1\right) / 2\right\} / / \mathrm{Q}\)
```

So we need to find P^{\prime} such that
$\left\{P^{\prime} \wedge b\right\}$
sum $:=$ sum $+n$;
$\mathrm{n}:=\mathrm{n}-1$;
$\left\{P^{\prime}\right\}$
and $P \Longrightarrow P^{\prime}$ and $P^{\prime} \wedge \neg b \Longrightarrow Q$

Hoare Logic Rule for while

```
Example
\(\left\{(\right.\) sum \(=0) \wedge\left(n_{0} \geq 0\right) \wedge\left(\mathrm{n}=n_{0}\right\} / / \mathrm{P}\)
while ( \(\mathrm{n}!=0\) ) \{
sum := sum + n ;
\(\mathrm{n}:=\mathrm{n}-1\);
\}
\(\left\{\right.\) sum \(\left.=n_{0}\left(n_{0}+1\right) / 2\right\} / / \mathrm{Q}\)
```

It can be shown formally that P^{\prime} : sum $=\left(n_{0}-n\right)\left(n_{0}+n+1\right) / 2$
works.

Finding the required P^{\prime} (or Q^{\prime})

- Soundness: No erroneous fact can be derived by Hoare logic.
- Completeness: All true facts can be derived by Hoare logic.

Finding the required P^{\prime} (or Q^{\prime})

- Soundness: No erroneous fact can be derived by Hoare logic.
- Completeness: All true facts can be derived by Hoare logic.

Theorem (Godel Incompleteness Theorem)

If the first-order logic includes arithmetic, there exists no complete axiomatisation of \Longrightarrow in the consequence rule.

In simpler words, not always possible to find the required P^{\prime}. So, Hoare logic is incomplete.

Relative Completeness

All true facts can be derived by Hoare logic provided:

- The first order assertion language is rich enough to express loop invariants
- All first-order theorems needed in the consequence rules are given.

Introduction

- Hoare logic is presented as a deductive system. We don't have any strategy to build the deductions

Introduction

- Hoare logic is presented as a deductive system. We don't have any strategy to build the deductions
- Weakest Preconditions and Strongest Postconditions are complete strategies to build valid Hoare logic deductions

Introduction

- Hoare logic is presented as a deductive system. We don't have any strategy to build the deductions
- Weakest Preconditions and Strongest Postconditions are complete strategies (assuming invariants are provided by the programmer) to build valid Hoare logic deductions

Weakest Preconditions

For a statement S and a postcondition R, a weakest precondition is a predicate Q such that for a any precondition P :

$$
\{P\} S\{R\} \Longleftrightarrow(P \Longrightarrow Q)
$$

Weakest Preconditions

For a statement S and a postcondition R, a weakest precondition is a predicate Q such that for a any precondition P:

$$
\{P\} S\{R\} \Longleftrightarrow(P \Longrightarrow Q)
$$

Theorem (Uniqueness of Weakest Precondition)

If both Q and Q^{\prime} are weakest preconditions, then by definition:
$\{Q\} S\{R\}$ holds $\Longrightarrow\left(Q^{\prime} \Longrightarrow Q\right)$

Weakest Preconditions

For a statement S and a postcondition R, a weakest precondition is a predicate Q such that for a any precondition P :

$$
\{P\} S\{R\} \Longleftrightarrow(P \Longrightarrow Q)
$$

Theorem (Uniqueness of Weakest Precondition)

If both Q and Q^{\prime} are weakest preconditions, then by definition:
$\{Q\} S\{R\}$ holds $\Longrightarrow\left(Q^{\prime} \Longrightarrow Q\right)$
$\left\{Q^{\prime}\right\} S\{R\}$ holds $\Longrightarrow\left(Q \Longrightarrow Q^{\prime}\right)$

Weakest Preconditions

For a statement S and a postcondition R, a weakest precondition is a predicate Q such that for a any precondition P :

$$
\{P\} S\{R\} \Longleftrightarrow(P \Longrightarrow Q)
$$

Theorem (Uniqueness of Weakest Precondition)

If both Q and Q^{\prime} are weakest preconditions, then by definition:
$\{Q\} S\{R\}$ holds $\Longrightarrow\left(Q^{\prime} \Longrightarrow Q\right)$
$\left\{Q^{\prime}\right\} S\{R\}$ holds $\Longrightarrow\left(Q \Longrightarrow Q^{\prime}\right)$
$\Longrightarrow Q=Q^{\prime}$

Weakest Precondition Rules

Notation: $\quad \operatorname{wp}(S, R)$ denotes the weakest precondition for statement S and postcondition R.

Weakest Precondition Rules

- $w p($ skip, $R)=R$

Skip Rule

Weakest Precondition Rules

- $w p($ skip, $R)=R$
- $\operatorname{wp}(x:=e, R)=R[x \leftarrow e]$

Skip Rule
Assignment Rule

Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(x:=e, R)=R[x \leftarrow e]$

Skip Rule
Assignment Rule

Example

$$
w p(x:=x-5, x>10)=(x>10)[x \leftarrow x-5]
$$

Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(x:=e, R)=R[x \leftarrow e]$

Skip Rule
Assignment Rule

[^0]
Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(x:=e, R)=R[x \leftarrow e]$

Skip Rule
Assignment Rule

Example

```
wp(x := x - 5, x > 10) = x > 15
```


Weakest Precondition Rules

- $w p($ skip, $R)=R$
- $\operatorname{wp}(\mathrm{x}:=\mathrm{e}, \mathrm{R})=\mathrm{R}[\mathrm{x} \leftarrow \mathrm{e}]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, R=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, R\right)\right)\right.$

Skip Rule
Assignment Rule Sequence Rule

Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(\mathrm{x}:=\mathrm{e}, \mathrm{R})=\mathrm{R}[\mathrm{x} \leftarrow \mathrm{e}]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, R=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, R\right)\right)\right.$

Skip Rule
Assignment Rule Sequence Rule

Example

$$
\text { wp (} x:=x-5 ; x:=x * 2, x>20)
$$

Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(\mathrm{x}:=\mathrm{e}, \mathrm{R})=\mathrm{R}[\mathrm{x} \leftarrow \mathrm{e}]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, R=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, R\right)\right)\right.$

Skip Rule
Assignment Rule Sequence Rule

Example

```
wp(x := x - 5; x := x * 2, x > 20)
=wp(x := x - 5, wp(x := x * 2, x > 20))
```


Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(\mathrm{x}:=\mathrm{e}, \mathrm{R})=\mathrm{R}[\mathrm{x} \leftarrow \mathrm{e}]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, R=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, R\right)\right)\right.$

Skip Rule
Assignment Rule Sequence Rule

Example

$$
\begin{aligned}
& w p(x:=x-5 ; x:=x * 2, x>20) \\
& =\operatorname{wp}(x:=x-5, x * 2>20)
\end{aligned}
$$

Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(x:=e, R)=R[x \leftarrow e]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, \mathrm{R}=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, \mathrm{R}\right)\right)\right.$

Skip Rule
Assignment Rule Sequence Rule

Example

$$
\begin{aligned}
& w p(x:=x-5 ; x:=x * 2, x>20) \\
& =(x-5) * 2>20
\end{aligned}
$$

Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(\mathrm{x}:=\mathrm{e}, \mathrm{R})=\mathrm{R}[\mathrm{x} \leftarrow \mathrm{e}]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, R=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, R\right)\right)\right.$

Skip Rule
Assignment Rule Sequence Rule

Example
wp (x := x - 5; x := x * 2, x > 20)
$\Longleftrightarrow \mathrm{x}>15$

Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(\mathrm{x}:=\mathrm{e}, \mathrm{R})=\mathrm{R}[\mathrm{x} \leftarrow \mathrm{e}]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, R=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, \mathrm{R}\right)\right)\right.$
- wp (if e then S_{1} else $\left.S_{2}, R\right)=(e$ $\wedge\left(\neg e \Longrightarrow \operatorname{wp}\left(S_{2}, R\right)\right.$

Skip Rule
Assignment Rule Sequence Rule $\operatorname{wp}\left(S_{1}, R\right)$)
Conditional Rule

Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(\mathrm{x}:=\mathrm{e}, \mathrm{R})=\mathrm{R}[\mathrm{x} \leftarrow \mathrm{e}]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, \mathrm{R}=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, \mathrm{R}\right)\right)\right.$
- wp (if e then S_{1} else $\left.S_{2}, R\right)=(e$ $\wedge\left(\neg e \Longrightarrow \mathrm{wp}\left(S_{2}, \mathrm{R}\right)\right.$

Skip Rule Assignment Rule Sequence Rule $\left.\Longrightarrow \quad \mathrm{wp}\left(S_{1}, R\right)\right)$

Conditional Rule

Example

wp(if $\mathrm{x}<\mathrm{y}$ then $\mathrm{x}:=\mathrm{y}$ else skip, $\mathrm{x}>=\mathrm{y}$)

Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(\mathrm{x}:=\mathrm{e}, \mathrm{R})=\mathrm{R}[\mathrm{x} \leftarrow \mathrm{e}]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, \mathrm{R}=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, R\right)\right)\right.$
- wp (if e then S_{1} else $\left.S_{2}, R\right)=(e$ $\wedge\left(\neg e \Longrightarrow \mathrm{wp}\left(S_{2}, \mathrm{R}\right)\right.$

Skip Rule
Assignment Rule Sequence Rule
$\Longrightarrow \quad \mathrm{wp}\left(S_{1}, R\right)$)
Conditional Rule

Example

wp (if $\mathrm{x}<\mathrm{y}$ then $\mathrm{x}:=\mathrm{y}$ else skip, $\mathrm{x}>=\mathrm{y}$)
$=((x<y) \Longrightarrow w p(x:=y, x>=y)) \wedge((x>=y) \Longrightarrow$ wp (skip, $x>=y$)

Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(\mathrm{x}:=\mathrm{e}, \mathrm{R})=\mathrm{R}[\mathrm{x} \leftarrow \mathrm{e}]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, \mathrm{R}=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, R\right)\right)\right.$
- wp (if e then S_{1} else $\left.S_{2}, R\right)=(e$ $\wedge\left(\neg e \Longrightarrow \mathrm{wp}\left(S_{2}, \mathrm{R}\right)\right.$

Skip Rule
Assignment Rule
Sequence Rule
$\Longrightarrow \quad \mathrm{wp}\left(S_{1}, \mathrm{R}\right)$)
Conditional Rule

Example

wp (if $\mathrm{x}<\mathrm{y}$ then $\mathrm{x}:=\mathrm{y}$ else skip, $\mathrm{x}>=\mathrm{y}$)
$=((x<y) \Longrightarrow w p(x:=y, x>=y)) \wedge((x>=y) \Longrightarrow$
$x>=y)$

Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(\mathrm{x}:=\mathrm{e}, \mathrm{R})=\mathrm{R}[\mathrm{x} \leftarrow \mathrm{e}]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, \mathrm{R}=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, \mathrm{R}\right)\right)\right.$
- wp (if e then S_{1} else $\left.S_{2}, R\right)=(e$ $\wedge\left(\neg e \Longrightarrow \mathrm{wp}\left(S_{2}, \mathrm{R}\right)\right.$

Skip Rule
Assignment Rule Sequence Rule wp (S_{1}, R))
Conditional Rule

Example

```
wp(if x < y then x := y else skip, x >= y)
=((x < y) \Longrightarrowy >= y)) ^ ((x >= y) \Longrightarrow x >= y)
```


Weakest Precondition Rules

- wp(skip, R) $=R$
- $\operatorname{wp}(x:=e, R)=R[x \leftarrow e]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, \mathrm{R}=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, \mathrm{R}\right)\right)\right.$
- wp (if e then S_{1} else $\left.S_{2}, R\right)=(e$ $\wedge\left(\neg e \Longrightarrow \operatorname{wp}\left(S_{2}, R\right)\right.$

Skip Rule
Assignment Rule Sequence Rule wp (S_{1}, R))
Conditional Rule

Example

```
wp(if x < y then x := y else skip, x >= y)
=((x < y) \Longrightarrow true)) ^ true
```


Weakest Precondition Rules

- $w p($ skip,$R)=R$
- $\operatorname{wp}(x:=e, R)=R[x \leftarrow e]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, \mathrm{R}=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, \mathrm{R}\right)\right)\right.$
- wp (if e then S_{1} else $\left.S_{2}, R\right)=\left(e \Longrightarrow w p\left(S_{1}, R\right)\right)$
$\wedge\left(\neg e \Longrightarrow \operatorname{wp}\left(S_{2}, R\right)\right.$

Skip Rule
Assignment Rule Sequence Rule

Conditional Rule

Example

wp(if $\mathrm{x}<\mathrm{y}$ then $\mathrm{x}:=\mathrm{y}$ else skip, $\mathrm{x}>=\mathrm{y}$)
= true

Precondition Semantics

\{?\} S \{R\}

We want to find a predicate just prior to the execution of S such that:

Precondition Semantics

\{?\} S \{R\}
We want to find a predicate just prior to the execution of S such that:

- Option 1: If S terminates, then R holds.

Precondition Semantics

\{?\} S \{R\}

We want to find a predicate just prior to the execution of S such that:

- Option 1: If S terminates, then R holds.
completes execution and control reaches the PC just after S

Precondition Semantics

\{?\} S \{R\}
We want to find a predicate just prior to the execution of S such that:

- Option 1: If S terminates, then R holds.
- Option 2: S terminates and R holds.

Precondition Semantics

$$
\{?\} S\{R\}
$$

We want to find a predicate just prior to the execution of S such that:

- Option 1: If S terminates, then R holds. Written as \{?\} $\mathrm{S}\{\mathrm{R}\} \quad$ Hoare triple for partial correctness
- Option 2: S terminates and R holds.

Written as [?] S [R] Hoare triple for total correctness

Precondition Semantics

$$
\{?\} \mathrm{S}\{\mathrm{R}\}
$$

We want to find a predicate just prior to the execution of S such that:

- Option 1: If S terminates, then R holds. Written as \{?\} $S\{R\} \quad$ Hoare triple for partial correctness Weakest Liberal Precondition (wlp)
- Option 2: S terminates and R holds.

Written as [?] S [R$]$
Hoare triple for total correctness
Weakest Precondition (wp)

Precondition Semantics

\{?\} S \{R\}

We want to find a predicate just prior to the execution of S such that:

- Option 1: If S terminates, then R holds. Written as \{?\} $\mathrm{S}\{\mathrm{R}\} \quad$ Hoare triple for partial correctness Weakest Liberal Precondition (w/p)
- Option 2: S terminates and R holds.

Written as [?] $\mathrm{S}[\mathrm{R}] \quad$ Hoare triple for total correctness Weakest Precondition (wp)
We can observe that $w p \Longrightarrow w l p$

Common rules for WP and WLP

- wp(skip, R) $=R$
- $\operatorname{wp}(\mathrm{x}:=\mathrm{e}, \mathrm{R})=\mathrm{R}[\mathrm{x} \leftarrow \mathrm{e}]$
- $\operatorname{wp}\left(S_{1} ; S_{2}, R=\operatorname{wp}\left(S_{1}, \operatorname{wp}\left(S_{2}, R\right)\right)\right.$
- wp (if e then S_{1} else $\left.S_{2}, R\right)=(e$ $\wedge\left(\neg e \Longrightarrow \operatorname{wp}\left(S_{2}, R\right)\right)$

Skip Rule
Assignment Rule Sequence Rule wp (S_{1}, R))
Conditional Rule

Common rules for WP and WLP

- wlp(skip, R) $=$ R
- wlp $(x:=e, R)=R[x \leftarrow e]$
- $\operatorname{wlp}\left(S_{1} ; S_{2}, \mathrm{R}=\mathrm{wp}\left(S_{1}, \mathrm{wlp}\left(S_{2}, \mathrm{R}\right)\right)\right.$

Skip Rule
Assignment Rule Sequence Rule

- wlp (if e then S_{1} else $\left.S_{2}, R\right)=\left(e \Longrightarrow w l p\left(S_{1}\right.\right.$, $R)) \wedge\left(\neg e \Longrightarrow \mathrm{wlp}\left(S_{2}, \mathrm{R}\right)\right)$

Conditional Rule

Abort WP Rule

abort aborts the program, so control doesn't reach the PC after it. So by our definition, it is non-terminating.

Abort WP Rule

abort aborts the program, so control doesn't reach the PC after it. So by our definition, it is non-terminating.
wp(abort, R) = false

$$
\text { wlp }(\text { abort }, R)=\text { true }
$$

Abort WP Rule

abort aborts the program, so control doesn't reach the PC after it. So by our definition, it is non-terminating.
wp (abort, R) = false
wlp(abort, R) = true

Example

wp ($x:=y / z, y=x * z$) $=(z \quad!=0)$
$\mathrm{wlp}(\mathrm{x}:=\mathrm{y} / \mathrm{z}, \mathrm{y}=\mathrm{x} * \mathrm{z})=$ true
Note that this is assuming division by zero causes abort.

Partial Correctness of while loop

Now, we want to find wlp(while(e) S, R).
In general, both wp and wlp are undecidable.

Partial Correctness of while loop

Now, we want to find wlp(while(e) S, R).
In general, both wp and wlp are undecidable.
Because of the halting problem

Partial Correctness of while loop

Now, we want to find wlp(while(e) S, R).
In general, both wp and wlp are undecidable.
Because we want the weakest such condition, we have to find the loop invariant, which is undecidable.

Partial Correctness of while loop

We need a loop invariant I such that

- I should hold in the beginning
- \{I $\wedge e\}$ S \{I\} holds
- \{I $\wedge \neg e\}$ skip $\{R\}$ holds

Partial Correctness of while loop

We need a loop invariant I such that

- I should hold in the beginning (Initial state x)
- \{I $\wedge e\}-S\{I\}$ holds
- \{I $\wedge \neg e\}$ skip $\{R\}$ holds $\}$
(For all possible states y)

Partial Correctness of while loop

We need a loop invariant I such that

- I should hold in the beginning (Initial state x)
$\left.\begin{array}{l}\text { - }\{I \wedge e\} S\{I\} \text { holds } \\ \text { - }\{I \wedge \neg e\} \text { skip }\{R\} \text { holds }\end{array}\right\}$ (For all possible states y)
wlp(while(e) S, R)
= I
$\wedge \forall y((\mathrm{I} \wedge \mathrm{e}) \Longrightarrow \mathrm{wlp}(\mathrm{S}, \mathrm{I}))[\mathrm{x} \leftarrow \mathrm{y}]$
$\wedge \forall y((I \wedge \neg e) \Longrightarrow R)[x \leftarrow y]$
We are interested in the weakest such I.

Partial Correctness of while loop

```
Example
wlp(while(x > 0) x--, {x == 0}) == ?
```


Partial Correctness of while loop

Example

wlp(while($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $\mathrm{x}=-1$

Partial Correctness of while loop

Example
wlp(while ($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $\mathrm{x}=-1$
Not a precondition because does not statisfy:
$\forall y((I \wedge \neg e) \Longrightarrow R)[x \leftarrow y]$

Partial Correctness of while loop

Example
wlp(while ($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $\mathrm{x}=-1$
Not a precondition because does not statisfy:
$\forall y((\mathrm{x}=-1 \wedge \mathrm{x}<=0) \Longrightarrow \mathrm{x}=0)[\mathrm{x} \leftarrow \mathrm{y}]$

Partial Correctness of while loop

Example
wlp(while ($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $\mathrm{x}=-1$
Not a precondition because does not statisfy:
$\forall y((y=-1 \wedge y<=0) \Longrightarrow y=0)$

Partial Correctness of while loop

Example
wlp(while ($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $\mathrm{x}=-1$
Not a precondition because does not statisfy:
$\forall y((y=-1 \wedge y<=0) \Longrightarrow y=0) X N o t$ provable

Partial Correctness of while loop

Example

wlp(while ($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $x>1$

Partial Correctness of while loop

Example
wlp(while ($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $x>1$
Does not satisfy:
$\forall y((I \wedge e) \Longrightarrow w l p(S, I))[x \leftarrow y]$

Partial Correctness of while loop

```
Example
wlp(while( \(x>0\) ) \(x--,\{x==0\}\) ) \(==\) ?
```

Candidate I: $x>1$
Does not satisfy:
$\forall y((x>1 \wedge x>0) \Longrightarrow w l p(x:=x-1, x>1))[x \leftarrow$
y]

Partial Correctness of while loop

Example
wlp(while ($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $x>1$
Does not satisfy:
$\forall y(\mathrm{x}>1 \wedge \mathrm{x}>0) \Longrightarrow \mathrm{x}-1>1)[\mathrm{x} \leftarrow \mathrm{y}]$

Partial Correctness of while loop

Example
wlp(while ($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $x>1$
Does not satisfy:
$\forall y(y>1 \wedge y>0) \Longrightarrow y-1>1)$

Partial Correctness of while loop

Example
wlp(while ($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $x>1$
Does not satisfy:
$\forall y(y>1 \wedge y>0) \Longrightarrow y-1>1) X N o t ~ p r o v a b l e$

Partial Correctness of while loop

Example

wlp(while ($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $x>=0$

Partial Correctness of while loop

Example

wlp(while ($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $\mathrm{x}>=0$ Satisfies both:

- $\forall y((I \wedge e) \Longrightarrow w l p(S, I))[x \leftarrow y]$

Partial Correctness of while loop

```
Example wlp(while ( \(\mathrm{x}>0\) ) \(\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}\) ) \(==\) ?
```

Candidate I: $x>=0$
Satisfies both:

- $\forall y((I \wedge e) \Longrightarrow w l p(S, I))[x \leftarrow y]$
$\forall y(y>=0 \wedge y>0) \Longrightarrow y-1>=0$

Partial Correctness of while loop

Example
wlp(while($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $x>=0$
Satisfies both:

- $\forall y((I \wedge e) \Longrightarrow w l p(S, I))[x \leftarrow y]$
$\forall y(y>=0 \wedge y>0) \Longrightarrow y-1>=0$
Provable

Partial Correctness of while loop

Example

wlp(while(x > 0) $x--,\{x==0\}$) == ?

Candidate I: $x>=0$
Satisfies both:

- $\forall y((I \wedge e) \Longrightarrow w l p(S, I))[x \leftarrow y]$
$\forall y(y>=0 \wedge y>0) \Longrightarrow y-1>=0$
Provable
- $\forall y((I \wedge \neg e) \Longrightarrow R)[x \leftarrow y]$

Partial Correctness of while loop

Example
 wlp(while(x > 0) $x--,\{x==0\}$) $==$?

Candidate I: $x>=0$
Satisfies both:

- $\forall y((I \wedge e) \Longrightarrow w l p(S, I))[x \leftarrow y]$
$\forall y(y>=0 \wedge y>0) \Longrightarrow y-1>=0$
Provable
- $\forall y((I \wedge \neg e) \Longrightarrow R)[x \leftarrow y]$
$\forall y(\mathrm{y}>=0 \wedge \mathrm{y}<=0) \Longrightarrow \mathrm{y}=0$

Partial Correctness of while loop

Example

wlp(while($\mathrm{x}>0$) $\mathrm{x}-\mathrm{-},\{\mathrm{x}==0\}$) $==$?

Candidate I: $x>=0$
Satisfies both:

- $\forall y((I \wedge e) \Longrightarrow w l p(S, I))[x \leftarrow y]$
$\forall y(y>=0 \wedge y>0) \Longrightarrow y-1>=0$
Provable
- $\forall y((I \wedge \neg e) \Longrightarrow R)[x \leftarrow y]$
$\forall y(y>=0 \wedge y<=0) \Longrightarrow y=0$
Provable

[^0]: Example $\operatorname{wp}(\mathrm{x}:=\mathrm{x}-5, \mathrm{x}>10)=\mathrm{x}-5>10$

