
COL874: Advanced Compiler
Techniques
Module 161-165 (Pipelining and Blocking)
By: Harsh Yadav

Introduction to Pipelining (Mod161)

● It’s kind of a different parallelization scheme for affine loop

nest.

○ Different from synchronization free or sync-based (barriers).

● Probably heard about 5-stage pipeline of instruction execution at

hardware level in other courses.

○ Inst. Fetch - Decode - Execute - Memory - Writeback.

● We will use similar concept on the software side (at compiler

level).

● Let’s see an example...

● The outer loop is parallelizable but…
● If y is laid out in row-major form?

○ Each processor memory footprint is
high -> Cache misses.

○ Accesses a different cache line on
each inner loop iteration.

○ In real case, L1 cache not used.
● Cache miss could be very expensive then

parallelization:
○ All cache misses from different

processors will go to memory ->
increasing load on memory.

○ Depends on machine.

for (i = 0; i <= M; i++) {

for(j = 0; j <= N; j++) {

X[i] = X[i] + Y[j][i];

}

}

Mem

CPU1CPU0

Y[j,0] Y[j,1]

Y[j,0]
Y[j,1]
...
...

Is it possible that…

CPUj accesses Y[j,0], Y[j,1],

Y[j,2],.....

And possibly X[0], X[1], X[2],......

for (i = 0; i <= M; i++) {

for(j = 0; j <= N; j++) {

X[i] = X[i] + Y[j][i];

}

}

Better Cache Usage for each

CPU.

Spatial locality is good.
Benefits

Data Dependency Alert!!

Each processor will write to X[0],

X[1],...

But after CPU0 written to X[0] it doesn’t

care. So we can pipeline the accesses.

Problem?

for (i = 0; i <= M; i++) {

for(j = 0; j <= N; j++) {

X[i] = X[i] + Y[j][i];

}

}

CPU0 (stage0) CPU1(stage1) CPU2(stage2)

X[0]+=Y[0,0]

X[1]+=Y[0,1] X[0]+=Y[1,0]

X[2]+=Y[0,2] X[1]+=Y[1,1] X[0]+=Y[2,0]

... X[2]+=Y[1,2] X[1]+=Y[2,1]

One Task | N stages
(Each Column is a Stage).

1st Task

2nd Task
3rd Task

O(n) Synchronisation
(Somewhat Loose,
everything doesn’t have to
happen in lock step.)

for (i = 0; i <= M; i++) {

for(j = 0; j <= N; j++) {

X[i] = X[i] + Y[j][i];

}

}

Fetch - Decode - Execute - Mem -
WB

It’s like each CPU is specialised
for one particular job.

Pipelining requires a loop depth of >= 2.
● Then iterations of outer loop can be counted as tasks.
● Iteration of the inner loop are counted as stages.
● Each processor will be specialized for the particular stage.

SOR Example(Mod162)

SOR (Successive Over Relaxation)
● It’s kind of relaxing the value

using the neighbours.
● N ∝ Size of X.
● M ∝ Number of relaxations.

for (i = 0; i <= M; i++) {

for(j = 0; j <= N; j++) {

X[j+1] = (X[j] + X[j+1] + X[j+2])/3;

}

}

Data Dependencies...
Green one: at jth itr write to X[j+1]

at j+1th itr read to
X[j+1]

Red one: Between outer iterations
because they are writing and reading to
same elements.

Yellow one: (0,1) read X[1].
(1,0) write X[1].
(0,1) < (1,0) so WAR

Sync-Free Parallelism?
Not possible. Whole graph is connected.
Any two points in the graph are
dependent.

for (i = 0; i <= M; i++) {

for(j = 0; j <= N; j++) {

X[j+1] = (X[j] + X[j+1] + X[j+2])/3;

}

}

Is it Pipelinable?
● I want it to divide in tasks, task

have stages and stages of first
task have one way dependency to
stages of second task and so on.

● Wavefront Phenomena.
● Not bidirectional dependencies

Lets try out the simple way
for (i = 0; i <= M; i++) {

for(j = 0; j <= N; j++) {

X[j+1] = (X[j] + X[j+1] + X[j+2])/3;

}

}

Above will not work
because there are
dependency between
stages.

for (i = 0; i <= M; i++) {

for(j = 0; j <= N; j++) {

X[j+1] = (X[j] + X[j+1] + X[j+2])/3;

}

}

We can try doing it
diagonally

Fully Permutable Loop(Mod163)

● How do distinguish between pipelinable and non-pipelinable loop?

● A loop is fully permutable if it can be permuted arbitrarily

without changing the meaning of the program.

for (i = ...) {

for(j = ...) {

for(k = ...)

}

}

for (j = ...) {

for(i = ...) {

for(k = ...)

}

}

for (k = ...) {

for(j = ...) {

for(i = ...)

}

}

∀ i1, i2
(i1 < i2) && (p(i1) > p(i2)) => No data dependence between i1 and i2.

A loop is fully permutable if it can be permuted arbitrarily without changing the meaning
of the program.

In fully permutable,
See (0,1) and (2,0) they
have no data dependency. So
the order of execution can
be changed.

Data dependencies are from strictly lower (i,j) to strictly larger values of
(i,j).
If all the edges are acute, then loop is permutable.

Change axis in
SOR

for (i = 0; i <= M; i++) {

for(j = 0; j <= N; j++) {

X[j+1] = (X[j] + X[j+1]

+ X[j+2])/3;

}

}

for (i = 0; i <= M; i++) {

for (jd = i; jd <= i+N; jd++) {

X[jd-i+1] = (X[jd-i] + X[jd-i+1]

+ X[jd-i+2])/3;

}

}

1 0
1 1

i
jd

i
j

Use fourier motzkin
method to find the
bounds

for (i = 0; i <= M; i++) {

for (jd = i; jd <= i+N; jd++) {

X[jd-i+1] = (X[jd-i] + X[jd-i+1]

+ X[jd-i+2])/3;

}

}

Now you can see all the
dependencies are now in the
acute angle.

for (i = 0; i <= M; i++) {

for (jd = i; jd <= i+N; jd++) {

X[jd-i+1] = (X[jd-i] + X[jd-i+1]

+ X[jd-i+2])/3;

}

}

For each task i:
CPU j waits for CPU j-1 to signal before
exec

O(N) synchronization. N tasks.

No need to wait at boundary points.

Pipeline Code Generation (Mod164)

● A loop with k outermost fully permutable loops can be structured as

a pipeline with O(k-1) dimensions with O(n) synchronisation.

○ n : number of iterations of the inner loop.

○ Ex: SOR example k=2.

for (i = 0; i <= M; i++) {

for(j = 0; j <= N; j++) {

X[j+1] = (X[j] + X[j+1] +

X[j+2])/3;

}

}

Pipelining Fully Permutable Loop

Ignoring boundary condition, a processor p can execute stage ith of a

task only after processor p-1 executed i-1th stage of that task.

To do this we use Condition Variables:

On every iteration, processor p executes wait(p-1) before the body and

signal(p+1) after the body.

for (i = 0; i <= M; i++) {

for (jd = i; jd <= i+N; jd++) {

X[jd-i+1] = (X[jd-i] + X[jd-i+1]

+ X[jd-i+2])/3;

}

}

Total Number of CPUs = M+N+1

Each CPUj is specialize for stage j. So lets
generate the code for the CPUj

CPU j ∈ [0, M+N]
i >= 0 and i >= j-N
i <= M and i <= j

for (i = 0; i <= M; i++) {

for (jd = i; jd <= i+N; jd++) {

X[jd-i+1] = (X[jd-i] + X[jd-i+1]

+ X[jd-i+2])/3;

}

}

Total Number of CPUs = M+N+1

Each CPUj is specialize for stage j. So lets
generate the code for the CPUj

CPU j ∈ [0, M+N]
i >= 0 and i >= j-N
i <= M and i <= j

for (i = max(0, j-N); i <= min(j, M); i++) {

if(j > i) wait(j-1); // If node is left boundary node or not.

X[j-i+1] = (X[j-i] + X[j-i+1] + X[j-i+2])/3;

if(j < i+N) signal(j+1);// If node is right boundary node or not.

}

Pipelining Vs Barrier

● Barrier has a lock-step semantics.
○ Faster Cpus need to wait more for slower threads.

● Pipeline has greater level of asynchronous behavior.

○ Wait/signal

○ Relaxed wavefront

○ Eg. Keep faster cpus can be called first for the execution and

slower cpus can be called later.

○ One cpu can be slower but the other cpus may not have to wait

for it.

Blocking (Mod165)
for (i = 0; i <= n; i++)

for (j = 0; j <= n; j++)

S;

-> Assume no Data Dependencies

here.

-> Yellow lines are execution

order.

for (ii = 0; ii <= n; i+=b)

for (jj = 0; jj <= n; j+=b)

for (i = ii*b; i <= min(n, (ii+1)*b); i++)

for (j = jj*b; j <= min(n, (jj+1)*b); j++)

s;

● Blocking is changing the execution order.
● When is it okay to do this? Why its good?
● Why part already discussed. Matrix Mul.
● Choosing b for greater cache locality.

Gives both the spatial and temporal
locality.

● How compiler can do it?
● What are the conditions on s such that we

can do blocking?

for (i = 0; i <= n; i++)

for (j = 0; j <= n; j++)

S;

-> Assume no Data Dependencies

here.

-> Yellow lines are execution

order.

for (ii = 0; ii <= n; i+=b)

for (jj = 0; jj <= n; j+=b)

for (i = ii*b; i <= min(n, (ii+1)*b); i++)

for (j = jj*b; j <= min(n, (jj+1)*b); j++)

s;

for (ii = 0; ii <= n; i+=b)

for (jj = 0; jj <= n; j+=b)

for (i = ii*b; i <= min(n, (ii+1)*b); i++)

for (j = jj*b; j <= min(n, (jj+1)*b); j++)

s;

When is it possible to do blocking?
Lets see this

s: A[B[i,j]] = f(i,j)

We can’t do blocking here because
there is a higher chance that there
are dependencies (let’s say (2,1),
(0,4)) and reordering them will
give different results.

Relative
order
changed

When is it possible to do blocking?
If order has changed, then there
should not be data dependence
between them.

Relative order remain same for 0 <= θ
<= 90.

So all data dependencies should be at
acute angle only.

Ex: check exec order in figure.

When is it possible to do blocking?
If order has changed, then there
should not be data dependence
between them.

Sufficient condition: whenever θ >
90 between two itr points, then
there is no data dependency.

Relative order may change for 90 < θ
< 180.

Relative order change ⇒ θ > 90.
Whenever θ > 90 ⇏ Relative order
change.

It is always possible to block fully permutable loops.

● They share same condition.
● In matrix multiplication example we did 3-level blocking.

○ Data dependence coming from C.
■ If (i1 == i2) && (j1 == j2)

○ Fully permutable? Yes. Check every order you will see.
Commutative property of addition.

for (i = 0; i <= n; i++) {

for (j = 0; j <= n; j++) {

for (k = 0; j <= n; j++) {

C[i,j] += A[i,k] * B[k,j];

}

}

}

Thank You
Harsh Yadav

(These slides are the summary of Module 161-165 of Compiler Design. For more details

check Youtube Playlist on compilerai channel).

