
COL874
Advanced Compiler Techniques

Modules 141-145

Presented by: Jai Arora



Lec-141: Affine Space Partitions

• Data dependencies exist across different iterations of the first loop

• Possible to transform the axes of the program to exploit Synchronization Free 

Parallelization

• Iterations of the outer loop in the transformed program can be done in parallel

• Why? Because there are no data dependencies across different values of k

• Increased locality due to the transformation as we decrease the reuse distance



Data Dependence Constraints

• If these constraints yield No Solution, 
then there is no data dependence 
across different values of k for the 
given pair of static accesses

• Check this for all possible pairs of 
static accesses (including self pairings)

• If the conditions are satisfied: the loop 
has 1 degree of parallelism (1 level of 
loop nest that can be parallelized)



Degrees of parallelism

• A loop nest has k degrees of parallelism if it has, within the nest, k
parallelizable for loops

• Can create O(nk) parallel virtual processors

2 degrees of parallelism



Affine Space Partitions

Iteration-Space
l-dim

Processor-space
k-dim

Affine Function

• l k: it is a many-to-one map, and a function (maps all the iterations)
• Need to use as many as (virtual) processors
• Partition: All the iterations in the partition are mapped to the same processor
• Constraint: This map needs to be an affine function



Affine Space Partitions

No data dependency

• Can have O(2n) virtual processors
• Our analysis should be able to exploit this
• Each 3AC statement (static access) is analyzed separately for maximum 

parallelism



Lec-142: Space Partition Constraints

• (C, c) are different for each statement s
• Variation: Could have a piecewise affine function instead of an affine function
• Piecewise affine functions can be solved using polyhedral analysis (potentially giving 

better results)
• Tradeoff: Performance vs Cost
• Restrict ourselves to Affine functions



Space Partition Constraints

• Need to find a solution to (C, c) satisfying data dependency constraints

• Trivial Solution: and 

• Represents a zero-dimensional processor space

• Everything mapped to the same processor

• Valid solution but not very useful due to no parallelism

• Also need to maximize the processor space dimension / rank of C

• Affine Partition: a (C, c) solution for each statement s represents an Affine 
partition



Space Partition Constraints

• Data dependent iterations are mapped to the same processor
• Unknowns: C1, c1, C2, c2



Space Partition Constraints

Iteration-Spaces Processor-space

• Data dependence could be across the same statement or different statements
• Chose these unknowns such that the constraints are satisfied, and the ranks are maximized



Lec-143: Maximum Rank Affine Partition

• Affine Partitions help us to argue about the processors, iterations and 
the data in a homogeneous way

• Trivial Solution: C1 = 0, c1 = 0, C2 = 0, c2 = 0

• But no parallelism



Maximum Rank Affine Partition

• Max Rank Solution:

• Desirable, but may not satisfy Data dependency constraints

• Interested in the Max Rank solution satisfying the data dependence 
constraints



Max Rank constraints



Space Partitioning Example

• Running Example:

• Six Statements (one for each access); two writes

• Data dependences:
• X[i, j] X[i, j] (both R/W)

• X[i, j] X[i, j-1] 

• Y[i, j] Y[i, j] (both R/W)

• Y[i, j] Y[i-1, j] 



Space Partitioning Example

• X[i, j] with itself won’t have any space partitioning because [i, j] is a 
full rank access

• X[i, j] = X[i, j] + Y[i-1, j]: we do have a data dependency, but in the 
same iteration

• No meaningful constraints

• We need only 2 affine functions, one for each C-statement (based on 
scalar dependencies)



Space Partitioning Example

• All the dependent iterations should be mapped to the same processor
• Disjoint chains are formed
• Could map each of the chains to a separate processor
• Need to find C1, c1, C2, c2 such that each chain is mapped to the same processor
• Answer: 1-D mapping for each statement

• P1 = i – j -1 for s1

• P2 = i – j for s2



Lec-144: Space Partition Constraints Example

• Only data dependencies:
• X[i, j] X[i, j-1] (I)

• Y[i-1, j] Y[i, j] (II)

• 12 unknowns

• Could use previous knowledge that dimensionality of the processor 
space = 1 (C1, C2 have dependent rows)

• For now, assume that C121 = C122 = 0 = C221 = C222



Space Partition Constraints Example

• New Problem:



Space Partitioning Constraints

• For dependency (I):

• Possible Solution: C11 = C21 = 1, C12 = C22 = 0, c1 = c2 = 0

• Iteration (i, j) is mapped to processor i

• All conditions are satisfied (one of the possible solutions)

• But this is not the only constraint



Space Partitioning Constraints

• For dependency (II):

• Possible Solution: C11 = C21 = 0, C12 = C22 = 1, c1 = c2 = 0

• This solution satisfies the second dependency but not the first

• Previous solution does not satisfy this dependency

• Need a solution that satisfies both the constraints



Space Partitioning Example Solution

• Solution: C11 = C21 = 1, C12 = C22 = -1, c1 = -1, c2 = 0

i – j – 1 = i’ – j’

• This holds for both the constraints



Lec-145: Solving Space Partition Constraints

• Both these constraints must be satisfied
• i, j, i’, j’ are not unknowns



Solving Space Partition Constraints

• Use gaussian elimination to get rid of some variables

• Use the constrains to eliminate i’, j’ 



Solving Space Partition Constraints

• Rewrite the equations:



Solving Space Partition Constraints

• Overapproximate the behavior of iteration variables for these 
constraints

• Assume that the equations hold for all real values of i , j

• Which means that the coefficient of i, j and the constant term are 
zero



Solving Space Partition Constraints

• On solving, we get:

• Actual constant values don’t matter because they only shift the space of 
processor IDs

• WLOG, pick C = 1, c2 = 0

• So, we get the same solution as before
• P1 = i – j – 1

• P2 = i – j

• Remaining: we need to make sure that all the iterations mapped to the same 
processor preserve the relative order of execution of these iterations



Thank You!
- Jai Arora


