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Lec-141: Affine Space Partitions

(3 =9; j < 1000; j++) @; 1 <= min(k, 1999 - k); 1l++)

A[i, 1 = A[i+1, j-1] - Alk -1+1, 1 -1]

* Datadependencies exist across different iterations of the first loop

* Possible to transform the axes of the program to exploit Synchronization Free
Parallelization

* |[terations of the outer loop in the transformed program can be done in parallel

 Why? Because there are no data dependencies across different values of k

* Increased locality due to the transformation as we decrease the reuse distance



Data Dependence Constraints

* If these constraints yield No Solution,
then there is no data dependence
across different values of k for the
given pair of static accesses

* Check this for all possible pairs of
static accesses (including self pairings)

* If the conditions are satisfied: the loop
has 1 degree of parallelism (1 level of
loop nest that can be parallelized)




Degrees of parallelism

* A loop nest has k degrees of parallelism if it has, within the nest, k
parallelizable for loops

* Can create O(n*) parallel virtual processors

par for(i = 8; k < n; i++)
par (§ =9; 1 < n; j++)

(k = 8; k € n; k++)
ﬁ[i: j: k] — III:l"[:i-.l j: k - 1]

2 degrees of parallelism



Affine Space Partitions

Affine Function

lteration-Space Processor-space
I-dim k-dim

| =k:itisa many-to-onemap, and a function (maps all the iterations)

* Need to use as many as (virtual) processors

e Partition: All the iterationsin the partition are mapped to the same processor
 Constraint: Thismap needs to be an affine function



Affine Space Partitions

— No data dependency

L

e Can have O(2n) virtual processors
* QOur analysis should be able to exploit this

* Each 3AC statement (static access) is analyzed separately for maximum
parallelism



Lec-142: Space Partition Constraints
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* (C, c) are different for each statements

e Variation:Could have a piecewise affine function instead of an affine function

* Piecewise affine functions can be solved using polyhedral analysis (potentially giving
better results)

* Tradeoff: Performance vs Cost

* Restrict ourselves to Affine functions



Space Partition Constraints

Need to find a solution to (C, c¢) satisfying data dependency constraints
Trivial Solution: C = (00 ...0)and c = (0)

Represents a zero-dimensional processor space

Everything mapped to the same processor
* Valid solution but not very useful due to no parallelism
* Also need to maximize the processor space dimension / rank of C

e Affine Partition: a (C, c) solution for each statement s represents an Affine
partition




Space Partition Constraints
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 Datadependentiterationsare mapped to the same processor
* Unknowns: C,, ¢;, C,, C,



Space Partition Constraints

\ C\ ) C
C'L / C‘L
lteration-Spaces Processor-space

* Datadependence could be across the same statement or different statements
* Chose these unknowns such that the constraints are satisfied, and the ranks are maximized



Lec-143: Maximum Rank Affine Partition

» Affine Partitions help us to argue about the processors, iterations and
the data in a homogeneous way

C\;Cl

* Trivial Solution: C; =0, ¢; =0, C;=0,¢,=0
* But no parallelism



Maximum Rank Affine Partition

e Max Rank Solution:

¢ 3
) ¢,= 0
Cz__: :;:— CL_:._Q.

* Desirable, but may not satisfy Data dependency constraints

* Interested in the Max Rank solution satisfying the data dependence
constraints



Max Rank constraints
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Space Partitioning Example

* Running Example:

e Six Statements (one for each access); two writes

* Data dependences:
* X[i, j] < X[i, j] (both R/W)
* X[i, jl © X[i, j-1]
* Y[i, j] < Y[i, j] (both R/W)
* Y[i, j] < Y[i-1, j]



Space Partitioning Example

* X[i, j] with itself won’t have any space partitioning because [i, j] is a
full rank access

e X[i, j] = X[i, j] + Y[i-1, j]: we do have a data dependency, but in the
same iteration

* No meaningful constraints

* We need only 2 affine functions, one for each C-statement (based on
scalar dependencies)



Space Partitioning Example

* Allthe dependentiterationsshould be mapped to the same processor
* Disjointchains are formed
* Could map each of the chainsto a separate processor
* Needtofind C, c;, C,, c,such that each chainis mapped to the same processor
* Answer: 1-D mapping for each statement
e P, =i—j-1 for s;
e P,=i—j for s,



Lec-144: Space Partition Constraints Example

* Only data dependencies: C, = ( e Cm_\ ¢, = (;g

* X[i, j] < X[i, j-1] (1) e T
* Y[i-1, j] < Y[i j] (l)

C Cua
e 12 unknowns ( . " - Cv»

* Could use previous knowledge that dimensionality of the processor
space = 1 (C,, C, have dependent rows)

* For now, assume that C;,; =C;,,=0=C,,; =C,,,



Space Partition Constraints Example

e New Problem:

C = (Cu C\Q} c,= (V)

c,= (C2)




Space Partitioning Constraints

* For dependency (I):
%

Then

* Possible Solution: C;;=C,;=1,C,,=C,,=0,¢;,=¢,=0

* Iteration (i, j) is mapped to processor i

* All conditions are satisfied (one of the possible solutions)
e But this is not the only constraint



Space Partitioning Constraints

* For dependency (/l):
%

Then

* Possible Solution: C;; =C,;=0,C;,=C,,=1,¢;,=¢,=0

* This solution satisfies the second dependency but not the first
* Previous solution does not satisfy this dependency

* Need a solution that satisfies both the constraints



Space Partitioning Example Solution

¢ SOIUthn: Cll = C21 = 1, C12 = C22 = '1, Cl = '1, C2 = 0
i—j—1=i"—-j
* This holds for both the constraints



Lec-145: Solving Space Partition Constraints
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e Both these constraints must be satisfied
* |, J, I, j are not unknowns



Solving Space Partition Constraints

» Use gaussian elimination to get rid of some variables
e Use the constrains to eliminate i, j°
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Solving Space Partition Constraints

* Rewrite the equations:



Solving Space Partition Constraints

* Overapproximate the behavior of iteration variables for these
constraints

* Assume that the equations hold for all real values of i, j

 Which means that the coefficient of j, j and the constant term are
Zero



Solving Space Partition Constraints

On solving, we get:
—C1p = (=0, =0 =C

Actual constant values don’t matter because they only shift the space of
processor IDs

WLOG, pickC=1,¢c,=0

So, we get the same solution as before

¢ P2=i_j

Remaining: we need to make sure that all the iterations mapped to the same
processor preserve the relative order of execution of these iterations



Thank You!

- Jai Arora



