
Module Summary 131-135
Advanced Compiler Techniques

Source:
https://www.youtube.com/playlist?list=PLf3ZkSCyj1tf3rPAkOKY5hUzDrDoekAc7
Videos: 131 - 135

https://www.youtube.com/playlist?list=PLf3ZkSCyj1tf3rPAkOKY5hUzDrDoekAc7

Summarizing

● Changing axes using Fourier Motzkin method (131)
● Affine array accesses (132)
● Data Reuse (133)

○ Data Reuse Category: Self Reuse (134)
○ Data Reuse Category: Self Spatial Reuse (135)

Module 131: Changing axes using
Fourier Motzkin Method

Changing axes/order of loop iteration indices

● Fourier Motzkin: To project a polyhedron on a smaller dimension
○ For n-Dimension poly -> Remove nth Dimension & project Poly on remaining n-1

Dimensions
○ Manipulate inequalities that represent polyhedron.

● Problem: Given polyhedron iteration space S, generate a loop nest with new
order (x1, x2… ,xn) of loop iteration indices.

● Change indices order: Respect data dependencies
● For the new order: What is LB and UB for each of iteration indices ?

○ Fourier Motzkin

Loop Bounds Generation for loop iterations indices

● Algorithm
○ Start with innermost loop index xn
○ Bring inequations to form: (for c1, c2 >= 0)

■ L <= c1 * xn
■ c2 * xn <= U

○ Use Fourier Motzkin recursively to project on remaining indices x1, x2,.. Xn-1
○ Output: Upper and Lower bound for x1, which is constant.

■ Use above inequations to get lower upper bound of x2, … till xn

Loop Bounds Generation

● Desired order: j[outermost], i[innermost]
● Start with inner-most loop index i.
● Bring inequations to expected form
● Remove i and project S on remaining

indices i.e. j
● Once projected: use inequation to identify

UB & LB of inner index i.e. i (based on
fixed value of outer index)

Changing Axes

● Can iterate horizontally, vertically and diagonally (j-i, j).
○ LB and UB on new axes: new variable k = j-i . Desired order (k [inner index], j

[outer index])
○ Use same algo to find LB and UB for k and j, which uses Fourier Motzkin algo

● Traverse order : (k [outermost] , j [innermost]])
● Project on k, eliminate j
● Get LB/UB of outer loop on k

Module 132: Affine array Accesses

Data Dependencies

● Reordered iteration indices: Switching order of iteration space, Changing axes
● Memory access within each iteration & Data Dependencies as result of changing axes

○ Do 2 iterations access same memory location ? Data Dependent. No reordering.

● Pair: Iteration 1: (i, j), Iteration 2: (i’, j’)
● 2nd part: Constraint for memory access

○ Affine constraint, affine expression (Cixi + C0)
● Not affine : % is not covered by affine expression

Affine array Accesses

● Most programs have affine access to memory w.r.t. surrounding loop indices
● Array access in loop is affine, iff

○ Loop bounds are expressible as affine expressions of
■ Surrounding loop indices & symbolic constants (regular constants, loop invariant)

○ Index for each dimension of array (1D- A[i] or 2D- A[i,j]) access, is also affine expression on
■ Surrounding loop indices & symbolic constants.
■ Example: 2j+10-i: Affine expression. i+j %20: Not affine expression

○ Examples: Indices i, j, k have affine bounds, n is loop invariant.

● Not affine: Multiply with symbolic constant (which is
not regular constant

● Affine: Addition to symbolic constant

Affine array Accesses

● Representation for 1 Array access in a loop nest: 4 tuple < F, f, B, b>
○ B and b : Represent space of iteration space of polyhedron
○ F and f : Represent affine expression w.r.t loop iteration indices which specify multi-dimension

address of memory access
○ If loop nest uses: a vector of index variable i, then Bi + b >= 0 [Iteration space]
○ Accessed array element : Fi + f [Memory address]

■ F : Coefficient matrix: represents coefficient of each of loop indices (CiXi + C0). F-Ci, f-C0
● Example: Surrounding loop iteration indices vector

Examples:
- 2D access B[i, j] , Y[j, j+1] , Y[1,2]
- 3D access: Z[1, i, 2* i+j]

Affine array Accesses

● Linearized forms for multi-dimensional arrays : may be non-affine

● For polyhyderal analysis: prefer non-linearized affine representation
○ Common in image processing and neural networks
○ Easier to analyze and optimize

● Affine array access
○ Used to reason about data dependencies and resue characteristics.

Module 133: Data Reuse

Data reuse

● Reason about memory access. To identify memory footprint of each access
○ Find if 2 iterations are related, like if data dependency between them.

● Data reuse property: Identify sets of iteration that access same data or same
cache line.

○ Can optimize for locality. Can bring those iteration close in execution time.
○ Useful for locality optimizations
○

● Data dependence property
○ Identify access that refer to same memory location & at least one of them is a write.
○ For given 2 accesses: RAW, WAR, WAW.

■ Don't reorder iterations when these exist, as it will give different results.

Data reuse categories

● Self reuse
○ Multiple iterations of same statement access same data

● Group reuse
○ Two same iterations of different statements access same data
○ If different statements access same data in same iteration

● Data Reuse (Temporal) is
○ Temporal:

■ If exact same data is accessed multiple times across iterations.
■ Useful in cacheline or general locality.

○ Spatial:
■ If different data in same cacheline is accessed.
■ Useful in cacheline locality only.

Data Reuse

●

● Self Spatial reuse
○ Each of Z[j], Z[j+1], Z[j+2] have self spatial reuse across different iterations.
○ In isolation, Z[j] has self spatial reuse in different iterations. High spatial locality.
○ 4 Different accesses considered as separate statements.
○ Z[j] likely to hit in same cache line

● Self Temporal reuse
○ Exact same element is accessed repeatedly once for each iteration of outer loop.

● Group spatial reuse
○ Z[j], Z[j+1] access same cache line

● Group temporal reuse
○ Across different iterations. Access by Z[j] would be accessed by Z[j+1] in next iteration.

Data Reuse

●

1. No. of memory access = 4n2 . For each iteration n2 access. 4 accesses for each.
2. Memory footprint = n/c cache lines . c = cache line size. Distinct memory location order n.

From 1 & 2. Pigeon-hole principle . Data reuse.

Reuse factors
- Factor of n: Due to self temporal reuse. 4n2 & n/c.
- Factor of c: due to self spatial reuse. Cache line access by same statement.
- Factor of 4: due to group temporal reuse.

Module 134: Self Reuse (Temporal)

Self Reuse (Temporal)

● Self reuse: Same element accessed for all iterations. F=(0), f=(0)

● Find relation between: F, f and reuse

Self Reuse (Temporal)

● Self reuse reason:
○ For A(10, 20)
○ Order n indices: (0,10), (1,9)...
○ Multiple points in iteration space access same array location

● If data referenced by access has
○ k dimensions: Dimensionality of access. Example: A[i+j, 2i+2j] 1D space.
○ Access is nested in d-depth loop nest, where d > k, (loop nest depth=2, dim of

access= 1)
○ Then same data can be reused : nd-k times

Self Reuse (Temporal)

● Dimensionality of a reference ~ Rank of the coefficient matrix (F)
○ Self Reuse: Rank of coefficient matrix < dimensionality of loop iteration space

■ k < d : Reuse.
■ k !< d : No reuse.

● Find self reuse or not
○ Identify to find iterations i and i’ (number of points in i and i’) where

■ Fi + f = Fi’ + f . Or F(i - i’) = 0
○ If F is full rank matrix.

■ Only 1 trivial solution: i = i’ . (same iteration and thus reuse). No non-trivial
solution.

○ If F is not full rank matrix (rank of F < total dimension of matrix).
■ Other non-zero solution: Null space of F.

Self Reuse (Temporal)
● Full rank matrix. Dim of matrix = 2x2 and Rank of matrix= 2

● Rank of matrix = 1. Null space (non-empty): i =j. FX = 0 . Points of order n.

Module 135: Self Spatial Reuse

Self Spatial Reuse
● Self spatial reuse: Different elements accessed in each iteration.

● Self reuse, temporal: No. Same element not accessed in
different iterations. F=(1). R=1, Dim=1.

● Self spatial reuse: Yes. A[0] in cache. A[1].. will hit same
cache.

● Self reuse, temporal: No. Rank=2. Dim=2.

● Self spatial reuse: Yes.
○ If cache lines are accessed multiple times across

different points in iteration space
○ Access (1,0) and (1, 1) are adjacent elements
○ Reuse distance for spatial locality large but spatial

reuse.

Self Spatial Reuse
● To reason Self spatial reuse, need to know Size of cache line.

○ Approximation: Consider 2 array elements access. They share same cacheline iff
■ They differ only in last dimension of a d-dimension array.
■ Assuming: all elements in last dimension fit in a single cache line.

● For last dimension, accesses are cheaper, so approximation meaningful.

Last dimension: i. Belongs to 1 cache line. i removed,
0 dim access.

Remove ith index. j fits in 1 cache line.
- Dimensionality of access = 1 (j index)
- Dimensionality of loop nest = 2
- 1 < 2. So self spatial reuse.

Self Spatial Reuse

● For self spatial reuse:
○ Truncate F by removing / Drop last row of coefficient matrix F. (New step in self spatial reuse)
○ Resulting coeff matrix is effective coefficient matrix.
○ If Rank of truncated matrix < depth of loop nest then self-spatial reuse.

● Significance of identifying self spatial reuse
○ It may be possible to reorder computation such that (we exploit spatial locality)

■ Innermost loop varies only the last coordinate of array
○ If self spatial reuse: Is it possible to reorder computation such that

■ Reuse distance between multiple accesses to same cacheline becomes close in exec
order

Self Spatial Reuse and Spatial locality
● Innermost loop index: i.

● Innermost loop index: j .
○ Apart from self spatial reuse. Will also exhibit spatial locality. (innermost loop iterates on innermost

dimension and it is in cache line.)
● Iteration vector should belong to nullspace of truncated F to obtain spatial locality

○ Null space should be non-trivial. Need more points than 0.

Has Self spatial reuse. Not spatial locality Iteration vector

Self Spatial Reuse and Spatial locality

● Innermost loop index: i. A [3, 2i, 7i + j]
● Doesn’t satisfy the requirement
● If use (i, j). j inner. In null space. Has spatial locality. Reuse
● If use (j, i). i inner. Not in null space. No spatial locality. Reuse
● For locality order of iteration space matters, if i inner or j. Not for reuse.

● A[3, 2i, i+7j] . Remove i+7j. For A[3, 2i], Rank=1. Spatial Reuse.
● A[2i, i+7j, 3] . Remove 3. For A[2i, i+7j]. Rank=2. Dimensionality=2. No spatial

reuse.
● A[j, j, i] . Rank =1 < 2. Has spatial reuse. If i innermost, would have spatial

locality.

Thank you
- Pankaj Gode

