Module Summary 131-135

Advanced Compiler Techniques

Source:
https://www.youtube.com/playlist?list=PLf3ZkSCyj1tf3rPAkOKY5hUzDrDoekAc7 Videos: 131-135

Summarizing

- Changing axes using Fourier Motzkin method (131)
- Affine array accesses (132)
- Data Reuse (133)
- Data Reuse Category: Self Reuse (134)
- Data Reuse Category: Self Spatial Reuse (135)

Module 131: Changing axes using Fourier Motzkin Method

Changing axes/order of loop iteration indices

- Fourier Motzkin: To project a polyhedron on a smaller dimension
- For n-Dimension poly -> Remove $\mathrm{n}^{\text {th }}$ Dimension \& project Poly on remaining n -1 Dimensions
- Manipulate inequalities that represent polyhedron.
- Problem: Given polyhedron iteration space S, generate a loop nest with new order $\left(x_{1}, x_{2} \ldots, x_{n}\right)$ of loop iteration indices.

- Change indices order: Respect data dependencies
- For the new order: What is LB and UB for each of iteration indices ?
- Fourier Motzkin

Loop Bounds Generation for loop iterations indices

- Algorithm
- Start with innermost loop index x_{n}
- Bring inequations to form: (for $\mathrm{c}_{1}, \mathrm{c}_{2}>=0$)
- $L<=c 1^{*} x_{n}$

```
for (x1 : 0 ...)
    for (xn : 0 ..)
```

- $\mathrm{C}_{2}{ }^{*} \mathrm{X}_{\mathrm{n}}<=\mathrm{U}$
- Use Fourier Motzkin recursively to project on remaining indices $x_{1}, x_{2}, \ldots X_{n-1}$
- Output: Upper and Lower bound for x_{1}, which is constant.
- Use above inequations to get lower upper bound of x_{2}, \ldots till x_{n}

Loop Bounds Generation

$$
\begin{aligned}
& \text { for }(i=0 ; i<9 ; i++) \\
& \text { for }(j=i ; j<7 \& \& j<i+4 ; j+t) \\
& A[i, j]=0 \text {; } \\
& \text { for }(j=0 ; ~ j<=6 ; ~ j+t) \\
& \text { for }(i=\min (8, j) ; i<=\max (j-3,0) ; i+t) \\
& 0 \leqslant i \\
& i \leqslant 8 \\
& i \leq j \\
& i \geqslant j-3 \\
& \text { - Desired order: j[outermost], i[innermost] } \\
& \text { - Start with innermost loop index i. } \\
& \text { - Bring inequations to expected form } \\
& \text { - Remove i and project } S \text { on remaining } \\
& \text { indices ide. j } \\
& \text { - Once projected: use inequation to identify } \\
& \text { UB \& LB of inner index ide. i (based on } \\
& \text { fixed value of outer index) }
\end{aligned}
$$

Changing Axes

- Can iterate horizontally, vertically and diagonally (j-i, j).
- LB and UB on new axes: new variable k = j-i. Desired order (k [inner index], j [outer index])
- Use same algo to find LB and UB for k and j , which uses Fourier Motzkin algo


```
for (k= 0; k <= 3; j++)
    for (j =0; j <= 7; j++)
        A[j-k, j] =0;
```

- Traverse order : (k [outermost] , j [innermost]])
- Project on k, eliminate \mathbf{j}
- Get LB/UB of outer loop on k

Module 132: Affine array Accesses

Data Dependencies

- Reordered iteration indices: Switching order of iteration space, Changing axes
- Memory access within each iteration \& Data Dependencies as result of changing axes - Do 2 iterations access same memory location? Data Dependent. No reordering.

$$
\begin{aligned}
& \text { for (} i=0 ; i<10 ; i+t) \\
& \text { for }(j=0 ; j<20 ; j++) \\
& A[(i+j) \% 20]=i * j ; \\
& \text { for }(i=0 ; i<10 ; i+t) \\
& \text { for (} j=0 ; j<20 ; j++ \text {) } \\
& A[2 j+10-i]=i * j ; \\
& \left\{\left(i, j, i^{1}, j^{\prime}\right) \mid(i+j) \% 20=\left(i^{1}+j^{\prime}\right) \% 20\right\} \\
& \text { non office } \\
& \text { - Pair: Iteration 1: (i, j), Iteration 2: (i', j') } \\
& \text { - end part: Constraint for memory access } \\
& \circ \text { Affine constraint, affine expression }\left(C_{i} x_{i}+C_{0}\right) \\
& \text { - Not affine : \% is not covered by affine expression } \\
& \left\{\left(i, j, i^{\prime}, j^{\prime}\right) \mid 2\left(j-j^{\prime}\right)=i-i^{\prime}\right\}
\end{aligned}
$$

Affine array Accesses

- Most programs have affine access to memory w.r.t. surrounding loop indices
- Array access in loop is affine, iff
- Loop bounds are expressible as affine expressions of
- Surrounding loop indices \& symbolic constants (regular constants, loop invariant)
- Index for each dimension of array (1D-A[i] or 2D- A[i,j]) access, is also affine expression on
- Surrounding loop indices \& symbolic constants.

■ Example: $2 j+10$-i: Affine expression. $i+j \% 20$: Not affine expression

- Examples: Indices $\mathrm{i}, \mathrm{j}, \mathrm{k}$ have affine bounds, n is loop invariant.

```
X [2 * i + j] : Affine
```

Y [i, j + n] : Affine
Z [i+3*j+2, j] : Affine
X [i, j, k] : Affine

```
X [ i *j] : Not Affine
Y [ i* n + j] : Not Affine
```

- Not affine: Multiply with symbolic constant (which is not regular constant
- Affine: Addition to symbolic constant

Affine array Accesses

- Representation for 1 Array access in a loop nest: 4 tuple < F, f, B, b>
- B and b: Represent space of iteration space of polyhedron
- F and f: Represent affine expression w.r.t loop iteration indices which specify multi-dimension address of memory access
- If loop nest uses: a vector of index variable i, then Bi $+\mathrm{b} \quad>=0$ [Iteration space]
- Accessed array element: Bi + f [Memory address]
- F : Coefficient matrix: represents coefficient of each of loop indices ($\mathrm{CiXi}+\mathrm{CO}$). F-Ci, f-C0
- Example: Surrounding loop iteration indices vector

$$
A[i-1]
$$

$F=\left(\begin{array}{ll}1 & 0\end{array}\right) \quad f=(-1)$

Examples:

- 2D access Bi, j] , Y[j, j+1] , Y[1,2]
- 3D access: Z[1, i, 2* i+j]

Affine array Accesses

- Linearized forms for multi-dimensional arrays : may be non-affine

- For polyhyderal analysis: prefer non-linearized affine representation
- Common in image processing and neural networks
- Easier to analyze and optimize
- Affine array access
- Used to reason about data dependencies and resue characteristics.

Module 133: Data Reuse

Data reuse

- Reason about memory access. To identify memory footprint of each access
- Find if 2 iterations are related, like if data dependency between them.
- Data reuse property: Identify sets of iteration that access same data or same cache line.
- Can optimize for locality. Can bring those iteration close in execution time.
- Useful for locality optimizations

O

- Data dependence property
- Identify access that refer to same memory location \& at least one of them is a write.
- For given 2 accesses: RAW, WAR, WAW.
- Don't reorder iterations when these exist, as it will give different results.

Data reuse categories

- Self reuse
- Multiple iterations of same statement access same data
- Group reuse
- Two same iterations of different statements access same data
- If different statements access same data in same iteration
- Data Reuse (Temporal) is
- Temporal:
- If exact same data is accessed multiple times across iterations.
- Useful in cacheline or general locality.
- Spatial:
- If different data in same cacheline is accessed.
- Useful in cacheline locality only.

Data Reuse
float $z[n]$;

- for ($i=0 ; i<n ; i+t)\}$

$$
\begin{aligned}
\text { for }(j=0 ; j<n ; j+t) \quad \text { \& } \\
Z[j+1]=(Z[j]+2[j+1]+2[j+2] / 2
\end{aligned}
$$

- Self Spatial reuse
- Each of $Z[j], Z[j+1], Z[j+2]$ have self spatial reuse across different iterations.
- In isolation, $Z[j]$ has self spatial reuse in different iterations. High spatial locality.
- 4 Different accesses considered as separate statements.
- Z[j] likely to hit in same cache line
- Self Temporal reuse
- Exact same element is accessed repeatedly once for each iteration of outer loop.
- Group spatial reuse
$Z[j], Z[j+1]$ access same cache line
- Group temporal reuse
- Across different iterations. Access by $Z[j]$ would be accessed by $Z[j+1]$ in next iteration.

Data Reuse

float $\mathrm{z}[n]$;

- for (i=0;i<n;i+t) $\{$
for $(j=0 ; j<n ; j+t)\{$
$z[j+1]=(Z[j]+2[j+1]+2[j+2)$,

1. No. of memory access $=4 n^{2}$. For each iteration n^{2} access. 4 accesses for each.
2. Memory footprint $=n / c$ cache lines $. c=$ cache line size. Distinct memory location order n. From 1 \& 2. Pigeon-hole principle. Data reuse.

Reuse factors

- Factor of n : Due to self temporal reuse. $4 n^{2} \& n / c$.
- Factor of c: due to self spatial reuse. Cache line access by same statement.
- Factor of 4: due to group temporal reuse.

Module 134: Self Reuse (Temporal)

Self Reuse (Temporal)

- Self reuse: Same element accessed for all iterations. $\mathrm{F}=(0), \mathrm{f}=(0)$ for ($i=0 ; i<n ; i+t)\{$

$$
A[0]=0 ;
$$

\}

```
```

-- Self reuse --

```
```

-- Self reuse --
-- 2D nest, 2D array access.
-- 2D nest, 2D array access.
-- Iteration sapce: 2D
-- Iteration sapce: 2D
for (i = 0; i < n; i++) {

```
for (i = 0; i < n; i++) {
```

```
for (j = 0; j < m; j++)
```

for (j = 0; j < m; j++)

```
for (j = 0; j < m; j++)
    A[i, 2*i] = 0; // Same loc for inner loop iter.
    A[i, 2*i] = 0; // Same loc for inner loop iter.
    A[i, 2*i] = 0; // Same loc for inner loop iter.
F=}\begin{array}{l}{(\begin{array}{ll}{1}&{0}\end{array})}\\{2}\end{array}0)\quad\textrm{f}=(\begin{array}{l}{0}\end{array}
F=}\begin{array}{l}{(\begin{array}{ll}{1}&{0}\end{array})}\\{2}\end{array}0)\quad\textrm{f}=(\begin{array}{l}{0}\end{array}
}
}
    -- No Self reuse --
    -- No Self reuse --
    -- 2D nest, 2D array access.
    -- 2D nest, 2D array access.
    -- Iteration sapce: 2D
```

 -- Iteration sapce: 2D
    ```
```

 }
    ```
    }
for (i = 0; i < n; i++) {
for (i = 0; i < n; i++) {
    for (j = 0; j < m; j++)
    for (j = 0; j < m; j++)
        A[i, 2*i + j] = 0; // diff values across diff iter.
        A[i, 2*i + j] = 0; // diff values across diff iter.
    }
    }
}
}
F= (\begin{array}{ll}{1}&{0}\end{array})
```

F= ($$
\begin{array}{ll}{1}&{0}\end{array}
$$)

```
- Find relation between: \(F\), \(f\) and reuse
```

-- No Self reuse --
for (i = 0; i < n; i++) {
A[i] = 0; // Different element accessed.
}
-- Self reuse --
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
A[i] = 0; // Same element for j.
}
}
F=(ll

```

\section*{Self Reuse (Temporal)}
- Self reuse reason:
- For A(10, 20)
- Order \(n\) indices: \((0,10),(1,9) \ldots\)
- Multiple points in iteration space access same array location
```

 -- Self reuse --
    ```
    -- Self reuse --
for (i = 0; i < n; i++) {
for (i = 0; i < n; i++) {
    for (j = 0; j < m; j++) {
    for (j = 0; j < m; j++) {
        A[i + j, 2*i + 2* j] = 0;
        A[i + j, 2*i + 2* j] = 0;
    }
    }
}
}
F=(1}10.1)\quadf=(0
F=(1}10.1)\quadf=(0
(2 2)
(2 2)
    (0)
```

 (0)
    ```
- If data referenced by access has
- k dimensions: Dimensionality of access. Example: A[i+j, 2i+2j] 1D space.
- Access is nested in d-depth loop nest, where \(d>k\), (loop nest depth=2, dim of access= 1)
- Then same data can be reused: \(\mathrm{n}^{\mathrm{d}-\mathrm{k}}\) times

\section*{Self Reuse (Temporal)}
- Dimensionality of a reference ~Rank of the coefficient matrix (F)
- Self Reuse: Rank of coefficient matrix < dimensionality of loop iteration space
- \(\mathrm{k}<\mathrm{d}\) : Reuse.

■ k!<d: No reuse.
- Find self reuse or not
- Identify to find iterations i and i' (number of points in i and i') where - \(\mathrm{Fi}+\mathrm{f}=\mathrm{Fi}+\mathrm{f}\). Or \(\mathrm{F}\left(\mathrm{i}-\mathrm{i}^{\prime}\right)=\mathbf{0}\)
- If F is full rank matrix.
- Only 1 trivial solution: i=i' (same iteration and thus reuse). No non-trivial solution.
- If \(F\) is not full rank matrix (rank of \(F<\) total dimension of matrix).

■ Other non-zero solution: Null space of \(F\).

Self Reuse (Temporal)
- Full rank matrix. Dim of matrix \(=2 \times 2\) and Rank of matrix \(=2\)
\[
F=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\]
null spece: No
\[
\begin{array}{ll}
i=0 \\
j=0 \text { (empty) } & \text { self reuse }
\end{array}
\]
- Rank of matrix \(=1\). Null space (nonempty): \(\mathrm{i}=\mathrm{j} . \mathrm{FX}=0\). Points of order n .
\[
F=\left[\begin{array}{ll}
1 & -1 \\
2 & -2
\end{array}\right] \quad \begin{array}{cl}
\text { null space: Has } \\
i-j=0 & \text { self reuse }
\end{array}
\]

Module 135: Self Spatial Reuse

Self Spatial Reuse
- Self spatial reuse: Different elements accessed in each iteration.
\[
\begin{gathered}
\text { for }(i=0 ; i<n ; i++) \\
A[i]=0 ;
\end{gathered}
\]
\[
\text { for }(i=0 ; i<n ; i+t)
\]
\[
\text { for }(j=0 ; j<m ; j+t)
\]
\[
A[j, i]=0 j
\]
- Self reuse, temporal: No. Same element not accessed in different iterations. \(\mathrm{F}=(1) . \mathrm{R}=1, \mathrm{Dim}=1\).
- Self spatial reuse: Yes. A[0] in cache. A[1].. will hit same cache.
- Self reuse, temporal: No. Rank =2. \(\operatorname{Dim}=F=\left(\begin{array}{ll}0 & 1\end{array}\right)\)
- Self spatial reuse: Yes.
- If cache lines are accessed multiple times across different points in iteration space
- Access \((1,0)\) and \((1,1)\) are adjacent elements
- Reuse distance for spatial locality large but spatial reuse.

\section*{Self Spatial Reuse}
- To reason Self spatial reuse, need to know Size of cache line.
- Approximation: Consider 2 array elements access. They share same cacheline iff
- They differ only in last dimension of a d-dimension array.
- Assuming: all elements in last dimension fit in a single cache line.
```

for (i = 0; i < n; i++) {
A[i] = 0;
}
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
A[j,i] = 0;
}
}

```

Last dimension: i. Belongs to 1 cache line. i removed, 0 dim access.

Remove \(\mathrm{i}^{\text {th }}\) index. j fits in 1 cache line.
- Dimensionality of access = 1 (j index)
- Dimensionality of loop nest = 2
- \(1<2\). So self spatial reuse.
- For last dimension, accesses are cheaper, so approximation meaningful.

\section*{Self Spatial Reuse}
- For self spatial reuse:
- Truncate F by removing / Drop last row of coefficient matrix F. (New step in self spatial reuse)
- Resulting coeff matrix is effective coefficient matrix.
- If Rank of truncated matrix < depth of loop nest then self-spatial reuse.
- Significance of identifying self spatial reuse
- It may be possible to reorder computation such that (we exploit spatial locality)
- Innermost loop varies only the last coordinate of array
- If self spatial reuse: Is it possible to reorder computation such that
- Reuse distance between multiple accesses to same cacheline becomes close in exec order

Self Spatial Reuse and Spatial locality
- Innermost loop index: i.

Example
\(A[3,2 i, 7 i+j]\) for iteration indices ( \(\left.\begin{array}{l}i \\ j\end{array}\right)\)
Removing the last dimension yields
\[
A[3,2 i]
\]
which has rank \(=1\)
Because rank \(<d(2)\), this access
Has Self spatial reuse. Not spatial locality
```

```
for (i = 0; i < n; i++) {
```

```
for (i = 0; i < n; i++) {
    for (j = 0; j < m; j++) {
    for (j = 0; j < m; j++) {
        A[3, 2i, 7i+j]
        A[3, 2i, 7i+j]
    }
    }
}
```

```
}
```

```

\section*{Self Spatial Reuse and Spatial locality}
- Innermost loop index: i. A \([3,2 i,(1)+j]\)
\[
\left.F=\begin{array}{ll}
(0 & 0
\end{array}\right)
\]
- Doesn't satisfy the requirement
- If use (i, j). j inner. In null space. Has spatial locality. Reuse
- If use (j, i). i inner. Not in null space. No spatial locality. Reuse
- For locality order of iteration space matters, if i inner or j. Not for reuse.
- A[3, 2i, i+7j]. Remove i+7j. For A[3, 2i], Rank=1. Spatial Reuse.
- A[2i, i+7j, 3]. Remove 3. For A[2i, i+7j]. Rank=2. Dimensionality=2. No spatial reuse.
- A[j, j, i] . Rank =1 < 2. Has spatial reuse. If i innermost, would have spatial locality.

Thank you
- Pankaj Gode```

