Locality, Matrix Multiplication,
and Affine Transformations

Advanced Compiler Techniques

Source:
https://www.youtube.com/playlist?list=PL{f3ZkSCyj1tf3rPAKOKY5hUzDrDoekAc7
Videos: 125 - 130

https://www.youtube.com/playlist?list=PLf3ZkSCyj1tf3rPAkOKY5hUzDrDoekAc7

Part 1: Locality

Locality: What is it? Why do we want it?

e Data locality refers to data accessed being near to each other, either in the
spatial dimension, or the temporal dimension.

e Spatial locality: Addresses which are spatially near each other get accessed.
Example: A-1, A, A+1, A+2, etc.

e Temporal locality: Same address is accessed again and again. Example: A, A,
B, A, C, A, etc.

e Caches exploit locality to reduce the (average) memory latency observed by
the execution pipeline.

e Typically more locality = More hits in caches = Faster Execution!

Interchanging Loops can affect locality

Reordering Loops can affect locality

High Spatial locality, low Temporal locality

a[6] a[7] a[8] a[9] a[0] a[1] Miss

Reordering Loops can affect locality

High Spatial locality, high Temporal locality

a[0] a[1] Migs

What parameters affect locality?

e Spatial: Prefetchers + CL size
e Temporal: Replacement Policy

Part 2: Matrix Multiplication

Matrix Matrix Multiplication

(row = 0; row < A ROW MAX; row++)
(col = 0; col < B COL MAX ; col++)

(idx = 0; 1dx < A COL MAX; idx++)
C[row, col] += A[row, 1idx] + B[idx, col]

C[row, col]: Can be reg allocated. One time cost.
Al row, idx]: No pointin reg allocating. Might need to pay for every access.
B[row, idx]: No point in reg allocating. Might need to pay for every access.

Matrix Matrix Multiplication

(row = 0; row < A ROW MAX; row++)
(col = 0; col < B COL MAX ; col++)

(idx = 0; 1dx < A COL MAX; idx++)
C[row, col] += A[row, 1idx] + B[idx, col]

Worst case: A -> Column major, B -> Row major
Best case: A -> Row maijor, B -> Column major

Realistically, if both A and B are row major, and B_COL_MAX is sufficiently large, every
access to B[idx, col] misses in cache. O(n®) misses.

10

Matrix Matrix Multiplication

row < A ROW MAX; row++)
= 0; col < B COL MAX ; col++)

(idx = 0; 1dx < A COL MAX; idx++)
C[row, col] += A[row, 1idx] + B[idx, col]

However, if
1. There are more cache lines than there are rows in B
2. More than 1 element of B can completely in a cache line
The inner two loops will only have to face O(n?/C) misses when the first column would be
accessed where C = Cache Line Size / Size of one element of B = number of columns of
B that can fit in the cache.
In best case when we have sufficiently high number of cache lines, all columns of B will fit, »
reducing the total penalty to for all three loops

What about A and C?

(row = 0; row < A ROW MAX; row++)
(col = 0; col < B COL MAX ; col++)

(idx = 0; 1dx < A COL MAX; idx++)
C[row, col] += A[row, 1idx] + B[idx, col]

Fastest moving index for both A and C is the columns. Therefore, if A and C are row-major, then we
only need to pay for each of them.
Therefore in total we pay around

If C > n, we don'’t get any benefit as then useless data gets fetched into cache. If C = n, we pay around
3n penalty. This makes sense as we need n access for each matrix to bring the matrix into the cache.
n accesses because each access brings a complete row, and there are n rows. 12

Matrix Matrix Multiplication

Blocking Matrix Multiplication

00
00
L0

00
00
L0

00
00
NN

00
00
NN

00
00
L0

00
00
L0

00
00
L0

00
00
L0

00
00
L0

00
00
L0

00
00
NN

00
00
NN

14

Blocking Matrix Multiplication

Best case, each block faces 3B%/C misses (B?/C for each sub-matrix). If each
element is one byte long:

C = cache line size = |

Total (n/B)® block operations.
Therefore total cost =

B <=n and C <= n. Therefore, best case we get 3n penalty. This matches the best
case estimate from earlier.

15

Part 3: Affine Loop Transformations

What does affine mean?

e An affine expression is a linear expression of the inputs.

° f(x1,x2,x)=c:0+c1x1+02x2+.....cnxn

17

When can we use polyhedral optimizations?

e Even if accesses are affine, there might be dependencies.

e Upper and lower bounds of loops are affine functions of outer loop variables.

e Increments are by 1. This can be achieved by using a placeholder variable in
loop and multiplying it by a constant before use.

e Under this assumption, the iteration space will always be convex.

18

Example

for (1 = 0; i <= 5; i++)
for (j =i; j <= T7; j++)
z[(j,i] = 0;

19

Categories of Affine Transformations

e Splitting iteration space into independent slices which can be executed
parallely.
e Blocking to create a hierarchy of iterations to improve locality.

20

Example: Splitting Into Parallel Slices

(1dx = 0; 1dx < N; 1dx ++)

al1] = b[1]

21

Example: Splitting Into Parallel Slices

block size =
p| = ceil(n/m)

(Local idx = m*p; local idx < min(m*(p+1), n); local idx++)
a[local idx] = b[local idx]

22

Affine Transform Theory: Three Spaces

1. Iteration space: Set of all dynamic execution instances, i.e. all possible

combinations of iterators. May/May not be rectangular.
2. Data space: Set of array elements accessed. Typically defined as an affine

functions of the iteration space.
3. Processor space: Set of all processors in the system. We create an affine

function map from iteration space to processor space.

23

lteration Space Example

for (i =0; i <= 5; i++)
for (j = 1i; j <= T7; j++)
Z[j,i] = 0;

L e

ANV ANV

N H 010

24

lteration Space Example

for (1 = 0; 1 <= 5; i++)
for (j = 1i; j <= T7; j++)
Z[j,i] = 0;

V V V

o0

25

lteration Space Example

94 OO
-l O S
-l 1 O
o -l 4

lteration Space Example

pN

27

lteration Space Example: Execution order

e Fastest moving variable is lexicographically smaller.

A\

28

lteration Space: Loop Invariant

29

Exchanging Variables

e Suppose we want to exchange i and j

fo)_(i_ =0, L €N 5 Lrt)
th.Lj= (',-) j(‘-? &LJ<(,+L{3J++>

B

A(_LJ)]=O Al 4N

How 1‘0 Su)lf(}\
axes i;;\?

30

Exchanging Variables

1. Project the iteration space on j to find the range of j.
2. Foreachj, findiin terms of j.

We are guaranteed to have another convex polyhedron after projection.

31

Exchanging Variables: Projection

e The set of points (x,, X,, ..., X_) will be in the projection of S on m dimensions
if for some (xm+1, SR xn), (x1, Xos e xn) lies in S.
e Effective for every point in the projection, you should be able to find some set

of values for the rest of n-m dimensions such that the n dimensional point lies
in S.

32

Exchanging variables: Idea

e Project the iteration space onto all the dimensions except the desired

innermost variable’s dimension.
e Then project the rest onto all the dimensions except the desired

second-innermost variable’s dimension.
e Then project the rest onto all the dimensions except the desired

third-innermost variable’s dimension.

... and so on until all variables are exhausted.

33

Fourier Motzkin Method

Input:

1. A convex polyhedron S in m dimensions.
2. Avariable x_ to eliminate

Output:

S’, a projection of S on all dimensions except the m'" dimension.

34

Fourier Motzkin Method: Terminology

35

Fourier Motzkin Method: Algorithm

Aaonithm: S = T2 | B +b >0¢
C = constranth, (n S (}\volwha X

Fox every paLn oa lower bound and
upper bound 0N X n C such thak
L € C % Xm

Coky & U
O\A& G, L 4 C U to S'
Mso add. S-C b S

¢,¢C, 20

36

Fourier Motzkin Method: Example Setup

Flimnate

37

Fourier Motzkin Method: Example Solution

con§ daux

38

Example Solution

Finally: S

39

Thanks!

-Setu Gupta

