Locality, Matrix Multiplication, and Affine Transformations

 Advanced Compiler Techniques

 Advanced Compiler Techniques}

Source:
https://www.youtube.com/playlist?list=PLf3ZkSCyi1tf3rPAkOKY5hUzDrDoekAc7
Videos: 125-130

Part 1: Locality

Locality: What is it? Why do we want it?

- Data locality refers to data accessed being near to each other, either in the spatial dimension, or the temporal dimension.
- Spatial locality: Addresses which are spatially near each other get accessed. Example: A-1, A, A+1, A+2, etc.
- Temporal locality: Same address is accessed again and again. Example: A, A, B, A, C, A, etc.
- Caches exploit locality to reduce the (average) memory latency observed by the execution pipeline.
- Typically more locality $=$ More hits in caches $=$ Faster Execution!

Interchanging Loops can affect locality

$$
\begin{aligned}
& \operatorname{for}(i=0 ; i<5 ; i++) \\
& \quad \operatorname{for}(j=0 ; j<10 ; j++) \\
& x=a[j]
\end{aligned}
$$

Reordering Loops can affect locality

$$
\begin{aligned}
& \operatorname{for}(\mathrm{i}=0 ; i<5 ; i++) \\
& \quad \operatorname{for}(j=0 ; j<10 ; j++) \\
& x=a[j]
\end{aligned}
$$

High Spatial locality, low Temporal locality

| $a[6]$ | $a[7]$ | $a[8]$ | $a[9]$ | $a[0]$ | $a[1]$ |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad Miss

Reordering Loops can affect locality

$$
\begin{aligned}
& \operatorname{for}(j=0 ; j<10 ; j++) \\
& \operatorname{for}(i \mid=0 ; i<5 ; i++) \\
& x=a[j]
\end{aligned}
$$

High Spatial locality, high Temporal locality

Mitisis

What parameters affect locality?

- Spatial: Prefetchers + CL size
- Temporal: Replacement Policy

Part 2: Matrix Multiplication

Matrix Matrix Multiplication

```
for(row = 0; row < A_ROW MAX; row++)
    for(col = 0; col < B_COL_MAX ; col++)
        for(idx = 0; idx < A_COL_MAX; idX++)
        C[row, col] += A[row, idx] + B[idx, col]
```

C[row, col]: Can be reg allocated. One time cost.
A[row, idx]: No point in reg allocating. Might need to pay for every access.
$B[$ row, idx]: No point in reg allocating. Might need to pay for every access.

Matrix Matrix Multiplication

```
for(row = 0; row < A_ROW MAX; row++)
    for(col = 0; col < B_COL_MAX ; col++)
        for(idx = 0; idx < A_COL_MAX; idX++)
        C[row, col] += A[row, idx] + B[idx, col]
```

Worst case: A -> Column major, B -> Row major
Best case: A -> Row major, B -> Column major
Realistically, if both A and B are row major, and $B _C O L _M A X$ is sufficiently large, every access to $B[i d x, ~ c o l]$ misses in cache. $O\left(n^{3}\right)$ misses.

Matrix Matrix Multiplication

```
for(row = 0; row < A ROW MAX; row++)
    for(col = 0; col < B_COL_MAX ; col++)
        for(idx = 0; idx < A_COL_MAX; idx++)
        C[row, col] += A[row, idx] + B[idx, col]
```

However, if

1. There are more cache lines than there are rows in B
2. More than 1 element of B can completely in a cache line

The inner two loops will only have to face $O\left(n^{2} / C\right)$ misses when the first column would be accessed where $C=$ Cache Line Size / Size of one element of $B=$ number of columns of B that can fit in the cache.
In best case when we have sufficiently high number of cache lines, all columns of B will fit, reducing the total penalty to $\mathrm{O}\left(\mathrm{n}^{2} / \mathrm{C}\right)$ for all three loops

What about A and C ?

```
for(row = 0; row < A_ROW MAX; row++)
    for(col = 0; col < B_COL_MAX ; col++)
        for(idx = 0; idx < A_COL_MAX; idx++)
        C[row, col] += A[row, idx] + B[idx, col]
```

Fastest moving index for both A and C is the columns. Therefore, if A and C are row-major, then we only need to pay $O\left(n^{2} / C\right)$ for each of them.
Therefore in total we pay around $3 n^{2} / C$.
If $C>n$, we don't get any benefit as then useless data gets fetched into cache. If $C=n$, we pay around $3 n$ penalty. This makes sense as we need n access for each matrix to bring the matrix into the cache. n accesses because each access brings a complete row, and there are n rows.

Matrix Matrix Multiplication

Blocking Matrix Multiplication

Blocking Matrix Multiplication

Best case, each block faces $3 B^{2} / C$ misses (B^{2} / C for each sub-matrix). If each element is one byte long:

$$
C=\text { cache line size }=1
$$

Total ($\mathrm{n} / \mathrm{B})^{3}$ block operations.
Therefore total cost $=3 n^{3} / B C$
$\mathrm{B}<=\mathrm{n}$ and $\mathrm{C}<=\mathrm{n}$. Therefore, best case we get 3 n penalty. This matches the best case estimate from earlier.

Part 3: Affine Loop Transformations

What does affine mean?

- An affine expression is a linear expression of the inputs.
- $f\left(x_{1}, x_{2}, x_{3}, \ldots ., x_{n}\right)=c_{0}+c_{1} x_{1}+c_{2} x_{2}+\ldots . c_{n} x_{n}$

When can we use polyhedral optimizations?

- Even if accesses are affine, there might be dependencies.
- Upper and lower bounds of loops are affine functions of outer loop variables.
- Increments are by 1 . This can be achieved by using a placeholder variable in loop and multiplying it by a constant before use.
- Under this assumption, the iteration space will always be convex.

Example

for (i = 0; i <= 5; i++) for ($\mathrm{j}=\mathrm{i}$; j <= 7; j++)

$$
z[j, i]=0 ;
$$

Categories of Affine Transformations

- Splitting iteration space into independent slices which can be executed parallely.
- Blocking to create a hierarchy of iterations to improve locality.

Example: Splitting Into Parallel Slices

for $(i d x=0 ; i d x<N ; i d x++)$
 a[i] = b[i]

Example: Splitting Into Parallel Slices

```
block_size = m
p}=\operatorname{ceil(n/m)
for(local_idx = m*p; local_idx < min(m*(p+1), n); local_idx++)
    a[local_idx] = b[local_idx]
```


Affine Transform Theory: Three Spaces

1. Iteration space: Set of all dynamic execution instances, i.e. all possible combinations of iterators. May/May not be rectangular.
2. Data space: Set of array elements accessed. Typically defined as an affine functions of the iteration space.
3. Processor space: Set of all processors in the system. We create an affine function map from iteration space to processor space.

Iteration Space Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=5 ; i++) \\
& \text { for }(j=i ; j<=7 ; j++) \\
& Z[j, i]=0 ;
\end{aligned}
$$

$$
\begin{array}{ll}
\bullet & i>=0 \\
\bullet & i<=5 \\
\bullet & j>= \\
\bullet & j<=7
\end{array}
$$

Iteration Space Example

$$
\begin{aligned}
& \text { for }(i=0 ; i<=5 ; i++) \\
& \text { for }(j=i ; j<=7 ; j++) \\
& Z[j, i]=0 ;
\end{aligned}
$$

$$
\begin{aligned}
& \bullet i>=0 \\
& \bullet-i+5>=0 \\
& \bullet-i+j>=0 \\
& \bullet-j+7>=0
\end{aligned}
$$

Iteration Space Example

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 0 & 5 \\
-1 & 1 & 0 \\
0 & -1 & 7
\end{array}\right]\left[\begin{array}{l}
i \\
j \\
1
\end{array}\right] \geqslant 0
$$

Iteration Space Example

$$
\begin{aligned}
& \left\{\underline{i} \in \mathbb{Z}^{d} \mid B \underline{i}+\underline{b} \geqslant 0\right\} \\
& \underline{i}=\binom{i}{j} \quad B=\left(\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right) \underline{b}=\left(\begin{array}{l}
0 \\
5 \\
0 \\
7
\end{array}\right)
\end{aligned}
$$

Iteration Space Example: Execution order

- Fastest moving variable is lexicographically smaller.

$$
\begin{aligned}
& \left\{\underline{i} \in \mathbb{Z}^{d} \mid B \underline{i}+\underline{b} \geqslant 0\right\}, \\
& \underline{i}=\binom{i}{j} \quad B=\left(\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right) \underline{b}=\left(\begin{array}{l}
0 \\
5 \\
0 \\
7
\end{array}\right)
\end{aligned}
$$

Iteration Space: Loop Invariant

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \quad\{\underline{i} \in \mathbb{Z} \mid B \underline{i}+\underline{b} \geqslant 0\} ? \\
& \underline{i}=(i) \quad B=\binom{1}{-1} \quad \underline{b}=\binom{0}{n-1}
\end{aligned}
$$

Exchanging Variables

- Suppose we want to exchange i and j

$$
\begin{aligned}
& \text { for }(i=0 ; i<9 ; i+t) \\
& \qquad \text { for }(j=i ; j<7 \& 4 j<i+4 ; j+j) \\
& \qquad A[i, j]=0 \\
& \text { How to switch } \\
& \text { axes } i, j \text { ? }
\end{aligned}
$$

Exchanging Variables

1. Project the iteration space on j to find the range of j.
2. For each j, find i in terms of j.

We are guaranteed to have another convex polyhedron after projection.

Exchanging Variables: Projection

- The set of points $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ will be in the projection of S on m dimensions if for some ($\left.\mathrm{x}_{\mathrm{m}+1}, \mathrm{x}_{\mathrm{m}+2}, \ldots, \mathrm{x}_{\mathrm{n}}\right),\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ lies in S .
- Effective for every point in the projection, you should be able to find some set of values for the rest of n -m dimensions such that the n dimensional point lies in S .

Exchanging variables: Idea

- Project the iteration space onto all the dimensions except the desired innermost variable's dimension.
- Then project the rest onto all the dimensions except the desired second-innermost variable's dimension.
- Then project the rest onto all the dimensions except the desired third-innermost variable's dimension.
... and so on until all variables are exhausted.

Fourier Motzkin Method

Input:

1. A convex polyhedron S in m dimensions.
2. A variable x_{m} to eliminate

Output:
S ', a projection of S on all dimensions except the $m^{\text {th }}$ dimension.

Fourier Motzkin Method: Terminology

$$
S=\{\underline{x} \mid B \underline{x}+\underline{b} \geqslant 0\}
$$

$C=$ constraints in S that involve x_{m} (coefficient of $x_{m} \neq 0$)

Fourier Motzkin Method: Algorithm
Algorithm:

$$
\begin{aligned}
& S=\{\underline{x} \mid B \underline{x}+\underline{b} \geqslant 0\} \\
& C=\text { constraints in } S \text { involving } x_{m}
\end{aligned}
$$

For every pair of lower bound and upper bound on x_{m} in C such that

$$
\begin{aligned}
& L \leqslant c_{1} x_{m} \quad c_{1}, c_{2} \geqslant 0 \\
& c_{2} x_{m} \leqslant U
\end{aligned}
$$

add $c_{2} L \leqslant c_{1} U$ to S^{\prime} Also add $S-C$ to S^{\prime}

Fourier Motzkin Method: Example Setup

$$
\begin{aligned}
& \text { for }(i=0 ; i<a ; i++) \\
& \qquad \text { for }(j=i ; j<\min (7, i+4) ; j++) \\
& \qquad A[i, j]=0 \\
& S=\{\underline{i} \mid B \underline{i}+\underline{b} \geqslant 0\} \quad \underline{i}=\binom{i}{j} \\
& B=\left(\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
-1 & 1 \\
0 & -1 \\
1 & -1
\end{array}\right) \quad \underline{b}=\left(\begin{array}{l}
0 \\
8 \\
0 \\
6 \\
3
\end{array}\right) \quad \text { Eliminate } i \\
& \text { (project on } j)
\end{aligned}
$$

Fourier Motzkin Method: Example Solution

$$
\begin{aligned}
& C=\left\{\underline{i} \mid B_{c} \underline{i}+b_{c} \geqslant 0\right\} \\
& B_{c}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
-1 & 1 \\
1 & -1
\end{array}\right) \quad b_{c}=\left(\begin{array}{l}
0 \\
8 \\
0 \\
3
\end{array}\right) \\
& \text { 1. } i \geqslant 0 \quad \text { consider } \quad \begin{array}{lll}
0 & 0 & (1,3) \\
\text { each } & 0 \leqslant j & (1,4)
\end{array} \\
& \text { 2. } i \geqslant j-3 \xlongequal[\text { pair }]{\text { each }} j-3 \leqslant 8 \quad(2,3) \\
& \begin{array}{lll}
\text { 3. } i \leqslant 8 & \text { of } & j-3 \leqslant j \\
\text { 4. } i \leqslant j & (2,4)
\end{array}
\end{aligned}
$$

Example Solution

Finally: $\quad S^{\prime}=\quad \begin{aligned} & j \geqslant 0 \\ & j \leqslant 6\end{aligned}$ (from $S-c$)

Thanks!

-Setu Gupta

