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Part 1: Locality



Locality: What is it? Why do we want it?

e Data locality refers to data accessed being near to each other, either in the
spatial dimension, or the temporal dimension.

e Spatial locality: Addresses which are spatially near each other get accessed.
Example: A-1, A, A+1, A+2, etc.

e Temporal locality: Same address is accessed again and again. Example: A, A,
B, A, C, A, etc.

e Caches exploit locality to reduce the (average) memory latency observed by
the execution pipeline.

e Typically more locality = More hits in caches = Faster Execution!



Interchanging Loops can affect locality




Reordering Loops can affect locality

High Spatial locality, low Temporal locality

a[6] a[7] a[8] a[9] a[0] a[1] Miss




Reordering Loops can affect locality

High Spatial locality, high Temporal locality

a[0] a[1] Migs




What parameters affect locality?

e Spatial: Prefetchers + CL size
e Temporal: Replacement Policy



Part 2: Matrix Multiplication



Matrix Matrix Multiplication

(row = 0; row < A ROW MAX; row++)
(col = 0; col < B COL MAX ; col++)

(idx = 0; 1dx < A COL MAX; idx++)
C[row, col] += A[row, 1idx] + B[idx, col]

C[row, col]: Can be reg allocated. One time cost.
Al row, idx]: No pointin reg allocating. Might need to pay for every access.
B[ row, idx]: No point in reg allocating. Might need to pay for every access.



Matrix Matrix Multiplication

(row = 0; row < A ROW MAX; row++)
(col = 0; col < B COL MAX ; col++)

(idx = 0; 1dx < A COL MAX; idx++)
C[row, col] += A[row, 1idx] + B[idx, col]

Worst case: A -> Column major, B -> Row major
Best case: A -> Row maijor, B -> Column major

Realistically, if both A and B are row major, and B_COL_MAX is sufficiently large, every
access to B[idx, col] misses in cache. O(n®) misses.
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Matrix Matrix Multiplication

row < A ROW MAX; row++)
= 0; col < B COL MAX ; col++)

(idx = 0; 1dx < A COL MAX; idx++)
C[row, col] += A[row, 1idx] + B[idx, col]

However, if
1.  There are more cache lines than there are rows in B
2. More than 1 element of B can completely in a cache line
The inner two loops will only have to face O(n?/C) misses when the first column would be
accessed where C = Cache Line Size / Size of one element of B = number of columns of
B that can fit in the cache.
In best case when we have sufficiently high number of cache lines, all columns of B will fit, »
reducing the total penalty to for all three loops



What about A and C?

(row = 0; row < A ROW MAX; row++)
(col = 0; col < B COL MAX ; col++)

(idx = 0; 1dx < A COL MAX; idx++)
C[row, col] += A[row, 1idx] + B[idx, col]

Fastest moving index for both A and C is the columns. Therefore, if A and C are row-major, then we
only need to pay for each of them.
Therefore in total we pay around

If C > n, we don'’t get any benefit as then useless data gets fetched into cache. If C = n, we pay around
3n penalty. This makes sense as we need n access for each matrix to bring the matrix into the cache.
n accesses because each access brings a complete row, and there are n rows. 12



Matrix Matrix Multiplication



Blocking Matrix Multiplication
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Blocking Matrix Multiplication

Best case, each block faces 3B%/C misses (B?/C for each sub-matrix). If each
element is one byte long:

C = cache line size = |

Total (n/B)® block operations.
Therefore total cost =

B <=n and C <= n. Therefore, best case we get 3n penalty. This matches the best
case estimate from earlier.
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Part 3: Affine Loop Transformations



What does affine mean?

e An affine expression is a linear expression of the inputs.

° f(x1,x2,x )=c:0+c1x1+02x2+.....cnxn
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When can we use polyhedral optimizations?

e Even if accesses are affine, there might be dependencies.

e Upper and lower bounds of loops are affine functions of outer loop variables.

e Increments are by 1. This can be achieved by using a placeholder variable in
loop and multiplying it by a constant before use.

e Under this assumption, the iteration space will always be convex.
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Example

for (1 = 0; i <= 5; i++)
for (j =i; j <= T7; j++)
z[(j,i] = 0;
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Categories of Affine Transformations

e Splitting iteration space into independent slices which can be executed
parallely.
e Blocking to create a hierarchy of iterations to improve locality.
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Example: Splitting Into Parallel Slices

(1dx = 0; 1dx < N; 1dx ++)

al1] = b[1]
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Example: Splitting Into Parallel Slices

block size =
p| = ceil(n/m)

(Local idx = m*p; local idx < min(m*(p+1), n); local idx++)
a[local idx] = b[local idx]

22



Affine Transform Theory: Three Spaces

1. Iteration space: Set of all dynamic execution instances, i.e. all possible

combinations of iterators. May/May not be rectangular.
2. Data space: Set of array elements accessed. Typically defined as an affine

functions of the iteration space.
3. Processor space: Set of all processors in the system. We create an affine

function map from iteration space to processor space.
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lteration Space Example

for (i =0; i <= 5; i++)
for (j = 1i; j <= T7; j++)
Z[j,i] = 0;
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lteration Space Example

for (1 = 0; 1 <= 5; i++)
for (j = 1i; j <= T7; j++)
Z[j,i] = 0;

V V V

o0

25



lteration Space Example
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lteration Space Example

pN
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lteration Space Example: Execution order

e Fastest moving variable is lexicographically smaller.

A\
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lteration Space: Loop Invariant
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Exchanging Variables

e Suppose we want to exchange i and j
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Exchanging Variables

1. Project the iteration space on j to find the range of j.
2. Foreachj, findiin terms of j.

We are guaranteed to have another convex polyhedron after projection.
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Exchanging Variables: Projection

e The set of points (x,, X,, ..., X_) will be in the projection of S on m dimensions
if for some (xm+1, SR xn), (x1, Xos e xn) lies in S.
e Effective for every point in the projection, you should be able to find some set

of values for the rest of n-m dimensions such that the n dimensional point lies
in S.
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Exchanging variables: Idea

e Project the iteration space onto all the dimensions except the desired

innermost variable’s dimension.
e Then project the rest onto all the dimensions except the desired

second-innermost variable’s dimension.
e Then project the rest onto all the dimensions except the desired

third-innermost variable’s dimension.

... and so on until all variables are exhausted.
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Fourier Motzkin Method

Input:

1. A convex polyhedron S in m dimensions.
2. Avariable x_ to eliminate

Output:

S’, a projection of S on all dimensions except the m'" dimension.
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Fourier Motzkin Method: Terminology
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Fourier Motzkin Method: Algorithm
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Fourier Motzkin Method: Example Setup

Flimnate
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Fourier Motzkin Method: Example Solution

con§ daux
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Example Solution

Finally: S
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Thanks!

-Setu Gupta



