
Locality, Matrix Multiplication,
and Affine Transformations

Advanced Compiler Techniques

Source:
https://www.youtube.com/playlist?list=PLf3ZkSCyj1tf3rPAkOKY5hUzDrDoekAc7
Videos: 125 - 130

1

https://www.youtube.com/playlist?list=PLf3ZkSCyj1tf3rPAkOKY5hUzDrDoekAc7

Part 1: Locality

2

Locality: What is it? Why do we want it?

● Data locality refers to data accessed being near to each other, either in the
spatial dimension, or the temporal dimension.

● Spatial locality: Addresses which are spatially near each other get accessed.
Example: A-1, A, A+1, A+2, etc.

● Temporal locality: Same address is accessed again and again. Example: A, A,
B, A, C, A, etc.

● Caches exploit locality to reduce the (average) memory latency observed by
the execution pipeline.

● Typically more locality = More hits in caches = Faster Execution!

3

Interchanging Loops can affect locality

4

Reordering Loops can affect locality

a[0] a[1] a[2] a[3] a[4] a[5] Missa[6] a[7] a[8] a[9] a[0] a[1]

High Spatial locality, low Temporal locality

5

Reordering Loops can affect locality

a[0] a[1] MissHit

High Spatial locality, high Temporal locality

6

What parameters affect locality?

● Spatial: Prefetchers + CL size
● Temporal: Replacement Policy

7

Part 2: Matrix Multiplication

8

Matrix Matrix Multiplication

C[row, col]: Can be reg allocated. One time cost.
A[row, idx]: No point in reg allocating. Might need to pay for every access.
B[row, idx]: No point in reg allocating. Might need to pay for every access.

9

Matrix Matrix Multiplication

Worst case: A -> Column major, B -> Row major
Best case: A -> Row major, B -> Column major

Realistically, if both A and B are row major, and B_COL_MAX is sufficiently large, every
access to B[idx, col] misses in cache. O(n3) misses.

10

Matrix Matrix Multiplication

However, if
1. There are more cache lines than there are rows in B
2. More than 1 element of B can completely in a cache line

The inner two loops will only have to face O(n2/C) misses when the first column would be
accessed where C = Cache Line Size / Size of one element of B = number of columns of
B that can fit in the cache.
In best case when we have sufficiently high number of cache lines, all columns of B will fit,
reducing the total penalty to O(n2/C) for all three loops 11

What about A and C?

Fastest moving index for both A and C is the columns. Therefore, if A and C are row-major, then we
only need to pay O(n2/C) for each of them.
Therefore in total we pay around 3n2/C.

If C > n, we don’t get any benefit as then useless data gets fetched into cache. If C = n, we pay around
3n penalty. This makes sense as we need n access for each matrix to bring the matrix into the cache.
n accesses because each access brings a complete row, and there are n rows. 12

Matrix Matrix Multiplication

13

Blocking Matrix Multiplication

X =

14

Blocking Matrix Multiplication

Best case, each block faces 3B2/C misses (B2/C for each sub-matrix). If each
element is one byte long:

C = cache line size = l

Total (n/B)3 block operations.

Therefore total cost = 3n3/BC

B <= n and C <= n. Therefore, best case we get 3n penalty. This matches the best
case estimate from earlier.

15

Part 3: Affine Loop Transformations

16

What does affine mean?

● An affine expression is a linear expression of the inputs.
● f(x1, x2, x3, …., xn) = c0 + c1x1 + c2x2 + ….. cnxn

17

When can we use polyhedral optimizations?

● Even if accesses are affine, there might be dependencies.
● Upper and lower bounds of loops are affine functions of outer loop variables.
● Increments are by 1. This can be achieved by using a placeholder variable in

loop and multiplying it by a constant before use.
● Under this assumption, the iteration space will always be convex.

18

Example

19

Categories of Affine Transformations

● Splitting iteration space into independent slices which can be executed
parallely.

● Blocking to create a hierarchy of iterations to improve locality.

20

Example: Splitting Into Parallel Slices

21

Example: Splitting Into Parallel Slices

22

Affine Transform Theory: Three Spaces

1. Iteration space: Set of all dynamic execution instances, i.e. all possible
combinations of iterators. May/May not be rectangular.

2. Data space: Set of array elements accessed. Typically defined as an affine
functions of the iteration space.

3. Processor space: Set of all processors in the system. We create an affine
function map from iteration space to processor space.

23

Iteration Space Example

● i >= 0
● i <= 5
● j >= i
● j <= 7

24

Iteration Space Example

● i >= 0
● -i + 5 >= 0
● -i + j >= 0
● -j + 7 >= 0

25

Iteration Space Example

26

Iteration Space Example

27

Iteration Space Example: Execution order

● Fastest moving variable is lexicographically smaller.

28

Iteration Space: Loop Invariant

29

Exchanging Variables

● Suppose we want to exchange i and j

30

Exchanging Variables

1. Project the iteration space on j to find the range of j.
2. For each j, find i in terms of j.

We are guaranteed to have another convex polyhedron after projection.

31

Exchanging Variables: Projection

● The set of points (x1, x2, …, xm) will be in the projection of S on m dimensions
if for some (xm+1, xm+2, …, xn), (x1, x2, … , xn) lies in S.

● Effective for every point in the projection, you should be able to find some set
of values for the rest of n-m dimensions such that the n dimensional point lies
in S.

32

Exchanging variables: Idea

● Project the iteration space onto all the dimensions except the desired
innermost variable’s dimension.

● Then project the rest onto all the dimensions except the desired
second-innermost variable’s dimension.

● Then project the rest onto all the dimensions except the desired
third-innermost variable’s dimension.

… and so on until all variables are exhausted.

33

Fourier Motzkin Method

Input:

1. A convex polyhedron S in m dimensions.
2. A variable xm to eliminate

Output:

S’, a projection of S on all dimensions except the mth dimension.

34

Fourier Motzkin Method: Terminology

35

Fourier Motzkin Method: Algorithm

36

Fourier Motzkin Method: Example Setup

37

Fourier Motzkin Method: Example Solution

38

Example Solution

39

Thanks!
-Setu Gupta

40

