
Locality, Matrix Multiplication, 
and Affine Transformations

Advanced Compiler Techniques

Source: 
https://www.youtube.com/playlist?list=PLf3ZkSCyj1tf3rPAkOKY5hUzDrDoekAc7
Videos: 125 - 130
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Part 1: Locality
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Locality: What is it? Why do we want it?

● Data locality refers to data accessed being near to each other, either in the 
spatial dimension, or the temporal dimension.

● Spatial locality: Addresses which are spatially near each other get accessed. 
Example: A-1, A, A+1, A+2, etc.

● Temporal locality: Same address is accessed again and again. Example: A, A, 
B, A, C, A, etc.

● Caches exploit locality to reduce the (average) memory latency observed by 
the execution pipeline.

● Typically more locality = More hits in caches = Faster Execution!
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Interchanging Loops can affect locality
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Reordering Loops can affect locality

a[0] a[1] a[2] a[3] a[4] a[5] Missa[6] a[7] a[8] a[9] a[0] a[1]

High Spatial locality, low Temporal locality
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Reordering Loops can affect locality

a[0] a[1] MissHit

High Spatial locality, high Temporal locality
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What parameters affect locality?

● Spatial: Prefetchers + CL size
● Temporal: Replacement Policy
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Part 2: Matrix Multiplication
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Matrix Matrix Multiplication

C[row, col]: Can be reg allocated. One time cost.
A[row, idx]: No point in reg allocating. Might need to pay for every access.
B[row, idx]: No point in reg allocating. Might need to pay for every access.
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Matrix Matrix Multiplication

Worst case: A -> Column major, B -> Row major
Best case: A -> Row major, B -> Column major

Realistically, if both A and B are row major, and B_COL_MAX is sufficiently large, every 
access to B[idx, col] misses in cache. O(n3) misses.
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Matrix Matrix Multiplication

However, if
1. There are more cache lines than there are rows in B
2. More than 1 element of B can completely in  a cache line

The inner two loops will only have to face O(n2/C) misses when the first column would be 
accessed where C = Cache Line Size / Size of one element of B = number of columns of 
B that can fit in the cache.
In best case when we have sufficiently high number of cache lines, all columns of B will fit, 
reducing the total penalty to O(n2/C) for all three loops 11



What about A and C?

Fastest moving index for both A and C is the columns. Therefore, if A and C are row-major, then we 
only need to pay O(n2/C) for each of them.
Therefore in total we pay around 3n2/C.

If C > n, we don’t get any benefit as then useless data gets fetched into cache. If C = n, we pay around 
3n penalty. This makes sense as we need n access for each matrix to bring the matrix into the cache. 
n accesses because each access brings a complete row, and there are n rows. 12



Matrix Matrix Multiplication
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Blocking Matrix Multiplication

X =
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Blocking Matrix Multiplication

Best case, each block faces 3B2/C misses (B2/C for each sub-matrix). If each 
element is one byte long:

C = cache line size = l

Total (n/B)3 block operations.

Therefore total cost = 3n3/BC

B <= n and C <= n. Therefore, best case we get 3n penalty. This matches the best 
case estimate from earlier.
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Part 3: Affine Loop Transformations
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What does affine mean?

● An affine expression is a linear expression of the inputs.
● f(x1, x2, x3, …., xn) = c0 + c1x1 + c2x2 + ….. cnxn
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When can we use polyhedral optimizations?

● Even if accesses are affine, there might be dependencies.
● Upper and lower bounds of loops are affine functions of outer loop variables.
● Increments are by 1. This can be achieved by using a placeholder variable in 

loop and multiplying it by a constant before use.
● Under this assumption, the iteration space will always be convex.
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Example
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Categories of Affine Transformations

● Splitting iteration space into independent slices which can be executed 
parallely.

● Blocking to create a hierarchy of iterations to improve locality.
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Example: Splitting Into Parallel Slices
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Example: Splitting Into Parallel Slices
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Affine Transform Theory: Three Spaces

1. Iteration space: Set of all dynamic execution instances, i.e. all possible 
combinations of iterators. May/May not be rectangular.

2. Data space: Set of array elements accessed. Typically defined as an affine 
functions of the iteration space.

3. Processor space: Set of all processors in the system. We create an affine 
function map from iteration space to processor space.
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Iteration Space Example

● i >= 0
● i <= 5
● j >= i
● j <= 7
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Iteration Space Example

● i >= 0
● -i + 5 >= 0
● -i + j >= 0
● -j + 7 >= 0

25



Iteration Space Example
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Iteration Space Example
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Iteration Space Example: Execution order

● Fastest moving variable is lexicographically smaller.
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Iteration Space: Loop Invariant
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Exchanging Variables

● Suppose we want to exchange i and j

30



Exchanging Variables

1. Project the iteration space on j to find the range of j.
2. For each j, find i in terms of j.

We are guaranteed to have another convex polyhedron after projection.
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Exchanging Variables: Projection

● The set of points (x1, x2, …, xm) will be in the projection of S on m dimensions 
if for some (xm+1, xm+2, …, xn),   (x1, x2, … , xn) lies in S.

● Effective for every point in the projection, you should be able to find some set 
of values for the rest of n-m dimensions such that the n dimensional point lies 
in S.
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Exchanging variables: Idea

● Project the iteration space onto all the dimensions except the desired 
innermost variable’s dimension.

● Then project the rest onto all the dimensions except the desired 
second-innermost variable’s dimension.

● Then project the rest onto all the dimensions except the desired 
third-innermost variable’s dimension.

… and so on until all variables are exhausted.
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Fourier Motzkin Method

Input: 

1. A convex polyhedron S in m dimensions.
2. A variable xm to eliminate 

Output:

S’, a projection of S on all dimensions except the mth dimension.
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Fourier Motzkin Method: Terminology
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Fourier Motzkin Method: Algorithm
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Fourier Motzkin Method: Example Setup
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Fourier Motzkin Method: Example Solution
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Example Solution
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Thanks!
-Setu Gupta
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