
COL874: Advanced Compiler 
Techniques
Modules 171-175
By: Aditya Senthilnathan
Source: Link

https://www.youtube.com/playlist?list=PLf3ZkSCyj1tf3rPAkOKY5hUzDrDoekAc7


Undefined Values
(Module 171)



Why do we need undef?

- The IR has to cater to multiple languages all of which have different semantics
- The C Language says that access of uninitialized values is undefined behavior i.e anything can 

happen

- Other languages like will just assign constant values like 0 to uninitialized variables or assign 
arbitrary values



Why do we need undef?

- The poison value is insufficient to handle some language semantics
- In the below example, if x is poison, then y will also be poison and printing it might result in 

error or something else due to UB. 

- However, some languages might expect a random value to be printed which cannot be done with 
poison value



The undef value

- As a solution to such cases, the LLVM IR has the undef value which is less 
non-deterministic than poison

- An undef value represents an unspecified bit pattern of it’s type



Transformations with undef

- When transforming programs with non-determinism, 
- The target program can only exhibit a subset of the behaviors of the source program

- This condition informally means that we are allowed to go from higher 
non-determinism to lower non-determinism but not the reverse

- Example



Transformations with undef

- Valid Transformations

For any value of variable a in the target program, we can choose a value for 
undef in the source program such that the two values for a are same. Thus, 
target program exhibits a subset of behaviors of the source program

- Eg. If a in target is 10 and b is 7, then a in source can be 10 by setting undef to 3

Assuming 
wrap-around



Transformations with undef

- Invalid Transformations

The target program can take values that the source program can never have. 
Hence it is invalid

- Eg. If b is 1, then a in source program can only be odd values but a in target can be both odd and 
even values.



Transformations with undef

- However, this transformation is valid

Source can be reduced to target by setting undef in source to 0
- The examples so far serve to illustrate that we can reduce the set of behaviors of the program 

from source to target but not increase it



The undef value

- The undef value also has the property that each time it is observed, it can return 
a different bit pattern

- While xor of a value with itself is normally 0, here the first transformation is 
invalid and the second valid, because the two undef values need not specify the 
same value and could be any two values

Invalid Valid



The undef value

- The undef value also has the property that each time it is observed, it can return 
a different bit pattern

Invalid Valid



Undef Operational Semantics 
(Module 172)



Semantics of undef

- Undef is non-deterministic in that it represents a set of values from which it 
returns a value each time it is observed

- Each time x is read, any value in {0,1,2….255} can be returned
- Each time y is read, any value in {0,2,4….254} can be returned
- Each time z is read, only 0 can be returned and thus z is deterministic. It can 

also be thought of as a partial undef value with singleton set of values

Fully undef value
Partially undef value



Semantics of undef

- Undef is non-deterministic in that it represents a set of values from which it 
returns a value each time it is observed

- While a fully undef value represents the entire range of permissible values for 
it’s type, partially undef values represent only a proper subset of the full range

Fully undef value
Partially undef value



Semantics of undef

- Branching on undef is Undefined Behavior (like poison)
- The alternative is to branch non-deterministically but this interferes with the kind of 

transformations the compiler usually performs such as Dead Code Elimination



Semantics of undef

- Branching on undef is Undefined Behavior
- Implications: Hoisting

- Transformation is valid
- Eg. a = false, b = undef



Semantics of undef

- Branching on undef is Undefined Behavior
- Implications: Loop Unswitching

- Transformation is invalid
- Eg. a = false, b = undef

false
UB



Semantics of undef

- Memory

- Storing to an undef address is UB, because abstract machine doesn’t know where to store

- As a result, hoisting is disabled for load and store instructions when the address could potentially 
be undef

UB if address is partially/fully undef (not a singleton set)

If value is undef, it simply sets 
memory bytes to undef



Semantics of undef

- Division by undef

Triggers UB if 0 is one of the values 
u can take



Semantics of undef

- Select instruction

- a, b can be undef or poison and according to c, the appropriate value is returned

- If c is undef/poison, 

- Undef - one of a and b is returned non-deterministically according to the set c represents

- Poison - poison is returned because operations with poison return poison

- Unlike in branching, UB is not triggered (Because select can only return expressions and is 
therefore less flexible)



WHYs of Undef semantics 
(Module 173)



Semantics of undef

- Why is undef allowed to yield different values when observed at different 
points?

- Because this relieves the compiler of having to save and restore garbage values in registers, 
thereby saving register space

- Furthermore, this obeys “replace all uses with” semantics of the IR which is ingrained in many 
compiler transformations such as constant propagation



Semantics of undef

- Why is branch on undef and poison UB?
- The Global Value Numbering transformation is valid only if branch on undef and poison is UB

- Eg. If branch on undef is non-deterministically chosen, then source would execute f(1) but target 
would execute f(undef) which is invalid

- Whereas, if branch on undef is UB, the code becomes unreachable and we can ignore this 
particular input



Non-determinism of poison and undef

- Relative degree of non-determinism between poison and undef
- Undef is more deterministic than poison. For example,

- Since poison is more non-deterministic of the two, poison can be converted to undef but the 
reverse is invalid



Non Determinism and Optimization Opportunity

- More non-determinism in the source program implies more optimization 
opportunities. Thus, poison has more optimization opportunities than undef. For 
example,

- If nd is poison, the if block is unreachable and can be deleted because it will trigger UB as any 
operation on poison is poison

- If nd is undef, it’s possible that the operation can return a deterministic value and therefore the if 
block won’t trigger UB and can’t be optimized



Non Determinism and Optimization Opportunity

- If we assume wrap around semantics, this transformation is invalid because loop in source will never 
execute whereas the one in target will

- If integer overflow is either poison or undef, this transformation is valid because, then in the source 
program, UB is triggered by branching on poison or undef for the n = INT_MAX case and therefore 
the compiler can ignore this corner case and the transformation is valid for all other cases



Non Determinism and Optimization Opportunity

- If signed integer overflow is poison, this transformation is valid, because a+x will be poison which 
makes the entire expression poison and poison can be transformed to the target expression

- If signed integer overflow is undef, this transformation is invalid. Consider the case a=INT_MAX, 
x=1. In this case, the source will always evaluate to false and target will always evaluate to true



Non Determinism and Optimization Opportunity

- Why have undef if poison is better for optimization?
- Undef gives us more predictable behavior such as when we print an uninitialized variable

- Furthermore, it helps us express certain language semantics in the IR which cannot be done with 
poison



Freeze Opcode in LLVM 
(Module 174)



Why do we need freeze opcode?

- There are limitations with poison and undef
- They trigger UB when used for branch condition as a result of which transformations like 

hoisting, loop unswitching, etc. are invalid
- Since undef can return different values on different observations, certain transformations such as 

the following involving strength reduction are disabled

Consider the case x = undef, y = 1. b in source would be 0 but b in target would be undef



Freeze Opcode

- Freezing a variable 
- Returns the same value if the variable is well-defined/deterministic
- If the variable is non-deterministic, it picks an arbitrary value out of the set of values that 

variable could have taken and returns that value thus making the result a well-defined value

Well-defined



Transformations with freeze

- Using the freeze opcode, we can make certain transformations which were 
previously invalid, valid

- Loop Unswitching

Valid

a = false,
b = undef/poison

works unlike before

Well-defined 
Not UB



Transformations with freeze

- Select to branching

Valid 

Well-defined 
Not UB



Degrees of Non-Determinism

- With undef, poison and freeze, we now have varying degrees of 
non-determinism in LLVM and the IR has to walk a fine line between them

Less optimization 
opportunity for 
generated program

Set of values from which 
to pick subset is larger 
towards the right



Optimization with Freeze

- When freeze is present on,
- Target side (RHS): It enables optimizations
- Source side (LHS): It disables optimizations (Makes values less non-deterministic, thus reducing 

optimization opportunity)

- Due to this nature of freeze, depending on how it is used, it can thwart certain 
optimizations



Optimization disabled with freeze

- The transformation is valid because the freeze(poison) can always choose true for the n=INT_MAX 
case

- However, if we had i < freeze(n+1), the transformation is invalid, because i would eventually become 
INT_MAX and there is no value that freeze can pick to make the condition true. The source and target 
will thus diverge



Optimization disabled with freeze

- This transformation is thwarted by freeze because af can’t have different valuations for evaluating b 
and c

- However, the compiler can accordingly reason and figure out that its acceptable to set af to 1 and 
therefore transform c to 1 in the target program

- This shows that if freeze is recklessly used, transformations are thwarted but with careful reasoning 
and proper use of freeze, the same transformations can be enabled. However, the catch is that the 
compiler has to work harder to find the valid transformations

Valid 



Optimizations with freeze

- This optimization which was previously invalid, is now valid with freeze

Valid 



Optimization disabled with freeze

- This optimization is invalid because v is a deterministic value and can’t be both y and b if y is not equal 
to b

Invalid 



Intro to Static Analysis 
Approaches (Module 175)



Existing Approaches

- The forbidden zone consists of cases leading to system failure such as seg fault, 
etc. that the program execution trajectory should not cross through

- The objective is to ensure that possible trajectories for execution stay away 
from the forbidden red regions



Testing

- This approach tries out various input instances to check if the trajectory crosses 
into a forbidden region

- Drawbacks
- Unchecked input instances can go into forbidden region

- Neither sound nor complete



Bounded Model Checking

- This approach exhaustively checks all input instances upto a certain bound
- Drawbacks

- Hard to scale
- Some input instances beyond the bound might go into forbidden region

- Neither sound nor complete



Abstract Interpretation

- This approach constructs an abstraction of the actual program and reasons 
about the abstraction instead of the program

- The abstraction can be thought of as an overapproximate enclosure which 
encompasses all possible execution trajectories and possibly more



Abstract Interpretation

- If a successful overapproximate abstraction is constructed that represents all 
possible trajectories and it doesn’t encompass any forbidden regions, then that 
is a proof of correctness

- This guarantees soundness i.e the actual program will never enter a forbidden 
region



Abstract Interpretation

- However, failure to find an abstraction doesn’t mean the program will enter a 
forbidden region

- It might just be that the algorithm’s incapable of constructing the correct 
abstraction.

- Thus, this method is not complete i.e failure to find abstraction doesn’t imply 
that the program is incorrect



Bug Finding Tools

- This approach tries to enhance testing by exploring the neighborhood of the 
execution trajectories using methods such as fuzzing, etc.

- This approach is neither sound nor complete



Soundness and Completeness

- Soundness is guaranteed when
- If tool finds proof of no violations then there are no violations in program

- Completeness is guaranteed when
- If there exist no possible violations then the tool will find a proof



The End


