COL729 Major Exam Solutions
Compiler Optimization
Sem Il, 2018-19
Answer all 5 questions Max. Marks: 50

1. Provide one example of a program and a data-flow analysis formulation where a
region-based analysis would yield better solutions than data-flow analysis.

a. Specify the data-flow analysis through the set of values, the partial-order
operator, and the transfer functions

b. Specify the composition, meet, and closure operators for the transfer
functions for the region-based analysis

c. Show an example, where the above-formulated region-based analysis would
provide a more precise solution than the above-formulated data-flow analysis.

[10]

Constant-propagation

Data flow analysis

Domain : map (C) from program variable to a constant value
Bottom : NAC (not a constant)
Top : Ul (uninitialized or not known)
Direction : Forward
Transfer function : For a statement (S), variable (x) and input map (in),
TF(S,in)(x) = identity, If S in not an assignment to x
else if S is an assignment to x, substitute the values present in
input map (in) for each operand variable used by statement S,
e if any operand value is NAC => TF(S,in)(x) = NAC
e Ifany operandis Ul => TF(S,in)(x) = Ul
e celse TF(S,in)(x) = value after substitution

Meet : If all predecessor send the variable to same constant C, then C else NAC

Region based analysis

Transfer function at exit of subregion S of a region R, fz oy =
AN Compose the transfer function for predecessor basic blocks B, and S along all
possible paths from entry of R to S)

Meet : (f, Ax,)(v) = f,(v) A f,(v)

Composition: (f, o f,)(v) = f,(f,(v))

BB1->BB2
BB2->BB3
BB1->BB3

BB3:
Z = x+y

e Using dataflow analysis at the OUT of BB3 will give z= NAC
e Using above described region based analysis at the OUT of BB3 will give z=5

2. Consider the following loop nest:

1) for (ii = 0; ii < n; ii = ii+B)

2% for (55 = 0; §53 < n; 5§53 = jj+B)

3) for (kk = 0; kk < n; kk = kk+B)

4) for (1 = ii; i < ii+B; i++)

5) for (3 = j3j: 3§ < jj+B; j++)

6) for (k = kk; k < kk+B; k++)

7 z[i,3]1 = 2[1,3] + X[1i,k]1*Y[k,]];

Express the iteration space and the data space of the loop-nest above through the
four-tuples <F,f,B,b> to represent the data-spaces and the iteration space. How many
matrices do you need to specify? What does each of them represent. What are the
dimensions and the values of these matrices? [5]

Iteration space:
B,b for each loop nest specifying the lower and upper bound for iteration variable

B=[1000000 b=[O
-1000001 -1
0100000 0
0-100001 i=[i -1
0010000 i 0
0010001 kk® -1
-B0O0O10O00O i 0
B0OO0O-1000 j B-1
0-B0O0O100 k 0
0OoBOO-100 n/B] B-1
00-B0OO1O 0
00BOO0-10] B-1]

Data space:

F.f for each static access specifying the affine function of loop index variables that produce
the array index for all dimensions

Z[i, j]

X[i , K]

Yik, il

i
Kk’

n/B]

i

kk®

n/B]

i
Kk’

n/B]

3. Consider the following loop-nest

for (i = 0; i <= 1000; i++)
for (j = 0; j <= min(750,i); j++)
X[+1]=(1/3) * (X[] + X[+1] + X[+2]);

Use Fourier-Motzkin elimination to transform this loop with outer-axis k=i+j. Show the
working of the algorithm succinctly, to show how you obtain the result. [8]

Iteration space:
i20,i<1000,j20,j<750,j<i

Introduce k = i+j
Let’s eliminate variable j by using j = k-i

New iteration space constraints:
i20,i<1000, k-i 20, k-i =750, k-i <i
or

i20,i<1000,k =i, k<i+750, k < 2*i
or

i20,i<1000, i<k, i2k-750, 2*i =k
(1 @ @) @ (5)

k should be outer-axis, so project away i from constraints:

Using 1 and 2, 0 <1000

Using1and 3,0 <k

Using 4 and 2, k-750 < 1000 => k<1750
Using 4 and 3, k-750 <k => -750<0
Using 5 and 2, k <2*1000 => k < 2000
Using 5 and 3, k < 2*k

Constraints for k:
k=0,k<1750

Constraints for i:
i20,i<1000,i<k,i=k-750,i= [k/2]

i 2 max([k/271, k-750),i2 0Oisredundantas [k/212 Ofork= 0
i < min(k,1000)

for (k = 0; k <= 1750; k++)
for (i = max(['k/271, k-750); i <= min(k,1000); i++)
X[k-i+1] = (1/3) * (X[k-i] + X[k-i+1] + X[k-i+2]);

Similarly can be done for eliminating i instead of j

4. Suppose there are two array accesses

Al2%, j, i+jland A[2 i+ 4,j-2,i+]]

In a 3-deep loop nest, with indices i, j, and k from the outer to the inner loop. What are all the
types of temporal reuse (self-temporal and group-temporal) in this loop nest? Ignore spatial

reuse.
[10]

Self-temporal reuse

For A[27i, |, i+]],

F=[200 f=[0
010 0
110] 0]

For A[2%i + 4, |-2, i+]],

F=[200 f=[4
010 -2
110] 0]

In both the above cases,

Rank of F, r=2 and loop nestdepthd =3

The difference between iteration variables (i,j,k), (i°,j ,k’) which access the same array index
is given by nullspace of F :

2(i-") =0, (57)=0;ie.i=i,j=]

O(n) self temporal reuse, i.e. an element is accessed O(n) times where n is the num of
iterations in loop with iteration variable k

Group-temporal reuse

The access have group temporal reuse, if there exists (i,j,k) and (i°,j’,k’), such that

F(ijK" - [k) = ff,

[200 [i-i [4
010 * Ji = -2
110] k-k™] 0]

or

i-it =2

o =2

k-k can be arbitrary from 0 to n, where n is the number of iterations in loop with iteration
variable k

5. Consider the following program:

for (i=0;i<n;i++){
Ali+1]1=A[li+1] *B[i+1]; //[S1
for (j=1i;j<n;j++){

Cli,j] = C[i,j] + D[0,i+1,2%]]; //S2

A[jl = A[j] * Cli,jl; /1S3

Apply the algorithm to find parallelism with a constant number of synchronizations to this
loop nest.
Show the queries you make to construct the program dependence graph. How many
ILP queries did you have to make? [4]

After inserting a constant number of synchronizations, parallelize each separate loop
nest (with no synchronization) if possible.

1.

2.

a.
b.
C.
d. Whatis the generated code before eliminating empty iterations and tests from

What are the space-partition constraints? [3]
Show the steps involved in solving the space-partition constraints. [3]
What is the solution to your space-partition constraints [2]

the inner loop (i.e., before applying Fourier Motzkin and before doing
case-analysis)? [1]

What is the generated code after applying Fourier Motzkin at each level of the
iteration. Show the case analysis and the final generated code at each step.
[4]

. ILP Queries (Total 9 queries, one for each pair of statements)

Edge between S1,S1: For both array A
3ii,st.0<i<n0<i<n,i>i,i+1=i+1

Edge between S2,S2: For both array C
3 i,i‘,j!j‘ S-t-OS|<n,OS|‘ <n,|SJ<n’ i\ SJ‘ <n’

(i) > @), i =i,j =]

Edge between S3,S3: For both array A
3 i,i"j’j‘ Stosi<n’osi‘ <n,isj<n’ i\ Sj‘ <n’

(i) >,)) J =]

Edge between $1,S2 and S2,S1:
No dependency as different arrays are accessed

Edge between S1,S3:
Aii,j,st.0<i<n0<i<n,i €j<n,i<i,i+t1=]j

Edge between S3,51:
Aii,j,st.0<i<n0<i<n,i<j<n,i<iji+t1=]j

Edge between S2,S3:
3, st.0<i<n,0<si<n,isj<n,i<j<n, ((i<i)or(i=i"andj<j))
i=iandj=j

Edge between S3,S2:
i) st.0<i<n0<i<n,i<j<n,i"<j<n, ((i <i)or(i=i" andj <j))
i=iandj=j

PDG:

S1->83
S3 -> 51
S3 ->S3
S2 -> S3

2. Constant number of synchronizations:

We will have a separate loop nest for each SCC in the PDG.

In this case, S1,S3 form 1 SCC and S2 is another SCC. Further, S3 depends on S2,
so S2 loop will be executed first and S3 will be executed later after synchronization

Loop1:
for (i=0;i<n;i++){
for(j=1i;j<n;j++){
Cli,j] = Cl[i,j] + D[O,i+1,2%]; //S2

}

barrier();
Loop2:
for (i = 0; i < n; i++) {
Ali+1]=A[i + 1] *B[i + 1]; //S1
for (j =1; j <n; j++) {
Alil = Alil * Cli,jl; //S3

Space partition constraints

For loop 1, S2 is not dependent on itself, so we can run all iterations in parallel.
Assuming a 2-D processor space,

The space partition constraints are:

For all (i,j) and (i",j") such that,

iir>=0, j>=i,j>=1i, ii<n, jj<ni=i, 5
[p1, p2 * [i +[pS = [p1, p2° * [+ [pd
p3,p4] jl p6 | p3,pd4’]] p6”]

Substituting i =i’ and j=j°, we get,
(p1-p17) " i+ (p2-p27) * j + (pS-p5’) =
(p3-p37) " i+ (p4-p4’) * j + (p6-p6’) =

The simplest solution to this is
[10 *[p, + [0 =TI
01 p,1 0] il

or
p,=iandp, =]

The processor space index variables p, =iand p, =] will have range
O<p,;<n,andis<p,<n,

Applying Fourier-motzkin to eliminate i from constraints for p,, we get
O<p;<n,andp;=p,<n,
For loop2, S3 is dependent on itself and S1 and S3 are also interdependent.

For S1 to S3 interdependence, the space-partition constraint imposed are:
For all (i) and (i*,j’) such that,

ii>=0, ' >=i, iii<n, j<ni+1=]
[p1 = [i] +[pS = [p1, p2° * [i" + [pS
p3] p6] p3’, pd’] '] p6”]

p1*i+p5=p1 *i +p2* +p5

p3 *i+p6=p3 *i +pd’*j +p6
or

p1*i+p5=p1 *i +p2*(i+1) + p5°
p3*i+p6=p3 *i +pd*(i+1)+p6

or

i*(p1-p2°) + p5-p2°-p5 =p1" * ¥’
i *(p3-p4’) + pb -p6°-p4’ =p3” * i’

or
p1=p2, p3=p4’, pS=p2 +p5, p6=p6 +p4d’, p1"' =0, p3 =0
The simplest solution for the above constraints are:

pl1=p2 =1, p3=p4 =1, p5=0,p5 =-1, p6=0,p6" =-1, p1°' =0, p3' =0

For S2,
[p, = [1 * [i] +[0 = T[i
p,] 1] 0] i
For S3,

[p, = [0, 1 * [i" +[-1 =][j-1
P,] 0,1] |1 -11] j-11]

The processor space index variables for S1, p, = p, =i will have range
0<p;p,<n

The processor space index variables for S3, p, = p, = j-1 will have range
-1 < py,p, <n-1

Applying Fourier-motzkin to eliminate i from constraints for p,,p,, we get
-1<p,,p, <n-1

The generated code is:

Loop1:
for (p; = 0; py; < n; py++) {
for (p, = py; P, < N; py++) {
for (i=0;i<n;i++){
for(j=1i;j<n;j++){
if(p1 ==1iand p2 ==j)
Cli,jl = CI[i,j] + D[0,i+1,2%]; //S2

1388

barrier();
Loop2:
for (p1 = '1; P4 <n; p1++){
for (p, = -1; p, < n; p++) {
for (i=0;i<n;i++){
if(p, ==i1and p, == p,)
Ali+1]1=A[i+1] *B[i+1]; //S1
for (j =1i;j<n;j++){
if(p, == j-1 and p, == p,)
Alil = A[j] * CI[i,j]; //S3

Fourier-Motzkin for S1
p1sisp17 0Si<n, -1Sp1 <n’ p1sp2sp11sp2<n

=>0sp, <n,p,=p,

Fourier-Motzkin for S3

O0<i<n, p,+1 < jsp+1, i<j<n, -1<sp, <n, p,<p,<p,1<p, <n

=> -1<p, <n-1,p,=p;,

Loop1:
for (p; = 0; py; < n; py++) {
for (p, = ps; P, < N; pot+) {
for (i=0;i<n;i++){
for(j=1i;j<n;j++){
if(p1 ==iand p2 ==j)
Clp;,p.l = Clp;,p,] + DIO, p;+1, 2%p,]; //S2

1388

barrier();

Loop2: Case analysis
P, =-1;
for (i=0;i<n;i++) {

for j =1i;j<n;j++){

if(p, == j-1)
Al =All*Cli,j I /1S3

}

}

for (p, = 0; p; < n-1; py++) {
for (i=0;i<n;i++){
if(p, == i)
Ali+1]=A[i+1] *B[i +1]; //S1
for(j=i;j<n;j++){
if(p, ==j-1)
AJjl = Aljl * CIi,jl; //S3

}

}

P, =n-1

for (i=0;i<n;i++){
if(p, ==

Ali + 1] = Ali + 1] * B[i + 1]; //S1

Fourier Motzkin

For S3 in case 1:

i<j<n-1, p+1<j < p+1 =>

i< p+1, pt1<sn-1,-1<p,<-1=>
i <0,1=n,, 0<i<n =>i=0,n>0

Ilpy=-1,
if(n > 0) A[0] = A[0] * C[0,01]; //S3

For S1 in case 2:

0<is<n-1, p,<is<p, =>
0<p,, p,sn-1,0<p,sn-2=>
0<n1,0sn-2=>n>1

For S3 in case 2:

i<js<n-1, p,+1<j<p+1 =>
i< p+1, 0<isn-1=>

0 < i<min(n-1, p,+1) =>

For S1in case 3:

0<isn-1, p,sisp, =>

0< p,, p,sn-1,n-1<p,<n-1=>
O0< n-1=>n>1

Loop2:
I py=-1;
if(n >0) A[0] =A[0]*C[0,0]; //S3

for (p; = 0; p; <n-1; p,++) {
Alp; + 1] = Alp, + 1] * Blp, + 1]; //S1
for (i=0; i <min(n-1, p, + 1); i++) {
Alp, + 11=Alp, + 1] * Cli,p, + 1]; //S3
}
}

II'p, =n-1
A[n] = A[n] *B[n]; //S1

