COL 100. Minor 2 Exam - Practice

Name:
Entry Number:

Group:

Notes:
e Total number of questions: 4. Max Marks: 20
e All answers should be written on the question paper itself.

e The last two sheets in the question paper are meant for rough work.
If you run out of space, you can answer questions in this rough space.
However, please clearly mention in the answer space for the appropriate
question that we should look at the rough space for its answer.

e We will collect the question paper (including the last two sheets meant
for rough work). We will not be collecting back any other rough sheets.



1. Write a function reverseVecString(Vector <string> & names) which
inputs a Vector of strings names and achieves the following operations:

(a) It reverses the order of the strings in the Vector. For exam-
ple, if the input Vector names is {"abc”,” xyz",” pqr” } your pro-
gram should change nums so that new contents of the Vector are
{"pqr’,” xyz",”abc” }. You should do this operation in place, i.e.,
all the changes should happen to the original input Vector nums
and you should not be creating any new Vector to achieve this

functionality. [3 marks]

void reverseVecString(vector<string>& names){
int len = names.size();
for(int i=0; i<len; i++){
string temp = names[len-1];
names . pop_back() ;
names.insert(names.begin()+i,temp );



(b) Modify your function in the part above so that the resulting Vec-
tor now contains each string in the reversed order, i.e., in this

)0

case, if you start with original Vector {"abc”,”zyz",”pqr”}, the
resultant Vector should be {"rgp,” zyz”,”cba”}. As before you
should do this by modifying the original Vector. You are free to

write auxiliary (helper) functions for this part. [3 marks]

void reverseString(string& name){
int len = name.size();
for(int i=0; i<len; i++){
char temp = name[len-1];
name.erase(name.end() -1);
name.insert (name.begin()+i,temp );

void reverseVecString(vector<string>& names){
int len = names.size();
for(int i=0; i<len; i++){
string temp = names[len-1];
names.pop_back() ;
reverseString(temp) ;
names.insert(names.begin()+i,temp );



2. Write a function HasIncreasingSubSeq(V ector<int> nums,intk) which
inputs a Vector of integers nums and a number k, and returns true if
there is a contiguous subsequence of nums which is non-decreasing
and whose length is at least k. For example, if the input Vector is
{12,4,5,7,10,2,13} and k = 4, your function should return true (due
to the presence of contiguous subsequence {4,5,7,10}. On the other
hand, the function should return false if the same Vector as earlier is
input but £ = 5. You should appropriatley handle the case when k£ is
greater than the size of the Vector. [4 marks]

bool HasIncreasingSubSeq(vector<int> nums, int k) {
int numl, num2;
int subseqlen = 1;
if (k > nums.size()) return false;
for(int i= 0; i< nums.size()-1; i++){
numl = nums[i];
num?2 = nums[i+1];
if (numl <= num?2)

subseqlen++;
else
subseqlen = 1;
if (subseqlen == k) return true;

3

return false;



3. Write a function multiply(Grid<int> A, Grid<int> B) which inputs
two Grids A, B defined over integers and returns a new Grid C' which
is the matrix multiplication of A and B. For example, if A is of size
m X n, B is of size n x p, then the resultant Grid C' should of be of
size m X p such that C;; = >} | Ay By; where C;; denotes the 75
element of matrix C. Similarly, A;, and By, denote the ik™ and kj*"
elements of A and B, respectively. Your program should return an
empty matrix if the dimensions of A and B are such that they can
not be multiplied with each other. What is the complexity of your
function in terms of m, n, p? You should express your answer using the
O notation covered in the class not worry about the constants or lower
order terms [5 marks]

Grid<int> multiply(Grid<int> A, Grid<int> B){
int A_row = A.numRows();

int A_col = A.numCols();

int B_row = B.numRows();

int B_col = B.numCols();
Grid<int> C;

if(A_col != B_row) return C;

C.resize(A_row, B_col);
for(int i=0; i<A_row; i++){
for(int j=0; j<B_col; j++){
int temp =0;
for(int k=0; k<A_col; k++){
temp += A[i] [k] * B[k][j];

+
Cl[il[j] = temp;

by

return C;

}

Complexity of this function is O(m * n * p), where grid A is of size m
x n and grid B is of size n x p.



4. Write a program which inputs two strings from the user: filename and
word. Your program should then create a input stream over file named
filename, read the contents of this file, and selectively write those lines
which contain one or more occurrences of word in them. For example,
if the file has the following content:

col100 is going well.
some more practice will help.
it is good to know so many students are doing co0l100.

and if the word is ”col100”, then your output file should contain the
following lines:

c0l100 is going well.
it is good to know so many students are doing co0l100.

You can write your output to a file named ”out.txt”. Note that you
will need to create a file output stream over ”out.txt” to which you
should selectively write the contents as described above. Do not forget
to close the streams after you are done processing them. [5 marks]

#include <iostream>
#include <vector>
#include <string>
#include <fstream>
#include <sstream>

using namespace std;

int main(){
string word, filename;
cin >> filename;
cin >> word;
ifstream inputfile;
inputfile.open(filename.c_str(), std::ifstream::in);

if ('inputfile.is_open())

6



cout << "Error: Cannot open " << filename << endl;
return O;
}
ofstream outputfile;
outputfile.open("out.txt", std::ifstream::out);
if ('outputfile.is_open())
{
cout << "Error: Cannot open " << "out.txt" << endl;
return O;
}
string line;
while (getline(inputfile, line)) {
istringstream line_ss(line);
string file_word;
while(line_ss >> file_word)
{
if (file_word.compare(word) == 0)
{
outputfile << line << endl;
break;
+
}
}
inputfile.close();
outputfile.close();



Rough page 1



Rough page 2



