
COL 100 Major Exam

November 22, 2018. 8:00 am - 10:00 am

Name:

Entry Number:

Group:

Notes:

• Total number of questions: 8. Max Marks: 40

• All answers should be written on the question paper itself.

• You can use any of the Standard or Stanford library functions while
answering the questions.

• The last two sheets in the question paper are meant for rough work.
If you run out of space, you can answer questions in this rough space.
However, please clearly mention in the answer space for the appropriate
question that we should look at the rough space for its answer.

• We will collect the question paper (including the last two sheets meant
for rough work). We will not be collecting back any other rough sheets.

1

1. Write an iterative function (i.e. using loops and no recursion)
checkOrdered(vector<int> vec) which inputs a vector of integers and
checks whether the numbers in the vector are arranged in sorted
(ascending) order. The function should return true if the vector is
sorted (e.g., for “5, 9, 13”) and should return false if the vector is not
sorted (e.g., for “9, 5, 13”). You should also take care of duplicates
appropriately (e.g., “5, 9, 9, 13” is sorted in ascending order but “5,
9, 13, 9” is not sorted in ascending order). Your program should run
in time complexity O(n). [5 points]

bool checkOrdered(vector<int> vec)

or

bool checkOrdered(Vector<int> vec)

{

for(int i=1; i< vec.size(); i++)

{

if(vec[i-1] > vec[i]) // can use vec.at(i) or vec.get(i) also

return false;

}

return true;

}

2

2. Suppose we are given a file containing the entry numbers and grades
of students in a class. As an example, consider the following file:

2018cs188934 D

2018ee189345 B

2018ce127678 A-

2018ch528145 B

2018me235609 B

2018tt123581 A

Write a program to read the grades from the file and print the number of
students for each grade sorted by the number of students. For example,
for the file given above, the output should be:

B 3

A 1

A- 1

D 1

B- 0

C 0

C- 0

E 0

F 0

Notice that “B 3” is printed first because it has the maximum number
of students (3). Similarly, “D 1” is printed before “B- 0”. If two grades
have the same number of students, the higher grade is printed first
(e.g., A is printed before A- and D). You can assume that “A” comes
before “A-” in the lexicographic order (and similarly for other letter
grades). The domain of the grade values is all the grades supported by
the IITD system : A, A-, B , B-, C, C-, D, E, F. [5 points]

int main(){

string filename;

cin >> filename;

ifstream infile;

infile.open(filename, std::ifstream::in);

map<string,int> grade_cnt = { {"A", 0}, {"A-", 0},{"B", 0},

3

{"B-", 0}, {"C", 0},{"C-", 0}, {"D", 0}, {"E", 0},{"F", 0} };

string entryno;

string grade;

while (infile >> entryno >> grade)

{

grade_cnt[grade]++;

}

infile.close();

map<int, set<string>> grade_sorted;

for (pair<string, int> grd_freq : grade_cnt) {

string grd = grd_freq.first;

int grd_cnt = grd_freq.second * -1;

if (grade_sorted.find(grd_cnt) == grade_sorted.end())

//grade_sorted.count((grd_cnt) == 0)) {

grade_sorted[grd_cnt] = set<string>();

}

grade_sorted[grd_cnt].insert(grd); // add(grd)

}

for (pair<int, set<string>> freq_grades : grade_sorted) {

int gfreq = freq_grades.first;

set<string> grds = freq_grades.second;

for (string grd : grds) {

cout << grd << " " << -1 * gfreq << endl; } } }

Some of the relevant functions from Stanford library:

promptUserForFile(infile, "Input file?");

grade_cnt.put(grade, grade_cnt[grade]+1)

for (string grd : grade_cnt) {

int grd_cnt = grade_cnt[grd] or grade_cnt.get(grd)

containsKey(grd_cnt)

4

3. Given a string s and a character ch, we would like to return the first
index at which ch appears in the string s. We would like to return −1
if ch does not occur in the given string s. Write a recursive program
(i.e., no loops) to achieve this funcionality. Your program should be
as efficient as possible. What is the time complexity of your program?
Can you do this task in O(n)? Note that copying a string of size n

takes O(n) time. [5 points]

int findIndex(string s, char ch, int i=0) {

if (i > s.length())

return -1;

else if (s[i] == ch)

return i;

return findIndex(s, ch, i+1);

}

Time complexity is O(n^2), where n is number of characters in the

string "s". The string "s" is passesd as an argument to the

recursive function and is copied to function call-stack

on each recursive call.

It can be done in O(n) time if we use a reference to

string s in the function argument.

5

4. Given two strings s1 and s2, we say that s1 is an anagram of s2, if
s1 can be obtained by a permutation of characters in s2. For exam-
ple, “stressed” is anagram for “desserts”. Similarly, “dormitory” is an
anagram for “dirtyroom”. Write a function checkAnagram(string s1,
string s2) which inputs two strings s1 and s2, and returns true if s1 is
an anagram of s2, false otherwise. Your implementation should be as
efficient as possible (more points for more efficient implementations).
What is the Big-O time complexity of your implementation? [5 points]

bool checkAnagram(string s1, string s2){

map<char,int> freqmap_s1;

map<char,int> freqmap_s2;

if(s1.length() != s2.length()) return false;

for(int i=0; i< s1.length(); i++){

if(freqmap_s1.find(s1[i]) == freqmap_s1.end())

freqmap_s1[s1[i]] = 0;

freqmap_s1[s1[i]]++;

}

for(int i=0; i< s2.length(); i++){

if(freqmap_s2.find(s2[i]) === freqmap_s2.end())

freqmap_s2[s2[i]] = 0;

freqmap_s2[s2[i]]++;

}

for (pair<char, int> char_freq_s1 : freqmap_s1) {

char char_s1 = char_freq_s1.first;

int freq_s1 = char_freq_s1.second;

if(freqmap_s2.find(char_s1) == freqmap_s2.end()

|| freqmap_s2[char_s1] != freq_s1)

return false;

}

return true;}

Time complexity is O(nlog(n))

6

5. Given a vector of integers, you have to print all the subsets of the set
of integers in the vector. Your implementation should be recursive.
Example: if input = {1, 2, 4}, then the output should be:

{}

{1}

{1,2}

{1,2,4}

{1,4}

{2}

{2,4}

{4}

Note that you can print the subsets in any order. [5 points]

void print_vec(vector<int> subset){

cout << "{";

int len = subset.size();

if(len == 0) {cout << "}" << endl; return;}

for(int i=0; i< len-1; i++)

cout << subset[i] << ",";

cout << subset[len-1] << "}" << endl; }

void print_subsets(vector<int> V, vector<int> &subset, int idx=0){

if(idx == V.size()) return;

if(idx == 0) print_vec(subset);

subset.push_back(V[idx]);

print_vec(subset);

print_subsets(V,subset, idx + 1);

subset.pop_back();

print_subsets(V,subset, idx + 1);

return;}

** Note: Function "vector.push_back(val)" adds a new element (val)

at the end of the vector and increases the size of the vector by 1.

Function "vector.pop_back()" removes the last element in the vector

and decreases the size of the vector by 1.

7

6. Given two strings s1 and s2, write a recursive function checkSubse-
quence(string const &s1, string const &s2) to check whether string s1
is a subsequence of s2 Recall that a string s1 is a sub-sequence of s2 if
s1 can be obtained by deleting zero or more characters in s2. For ex-
ample, “pat” is a substring of “painter” but “pat” is not a substring of
“pale”. Note that for s1 to be a subsequence of s2, the characters in s1
should occur in the same order as s2. e.g., “abc” is not a subsequence
of “adcb”. You should not use any loops, you should use only recursion
and your implemented checkSubsequence function should make atmost
O(n) recursive calls.[5 points]

bool checkSubsequence(string const &s1, string const &s2)

{

if(s1.length() == 0) return true;

if(s1.length() > s2.length()) return false;

if(s1[0] == s2[0])

return checkSubsequence(s1.substr(1), s2.substr(1));

else

return checkSubsequence(s1, s2.substr(1));

}

8

7. Write a function that inputs a number n (n >= 1) and returns a grid
with numbers 1 to n2 arranged in a diagonal fashion. For example, for
n = 3, your output should be:

1 3 6

2 5 8

4 7 9

In other words, you start from top diagonal (going left to right), and
then go all the way down to the bottom diagonal. e.g., for n = 3,
you first start with the first diagonal row moving right and upwards
with one element (1), then the second diagonal row moving right and
upwards with two elements (2 and 3), then the third diagonal row
moving right and updwards with three elements (4, 5 and 6), then the
fourth diagonal row moving right and upwards with two elements (7
and 8), and finally the fifth diagonal row moving right and upwards
with one element (9). As another example, for n = 4, your output
should be:

1 3 6 10

2 5 9 13

4 8 12 15

7 11 14 16

You can either return the grid using the Grid ADT discussed in class,
or a Vector of Vectors. Your function should look something like the
following:

Grid<int> makeGrid(int n)

{

//your code goes here

}

or

Vector<Vector<int>> makeGrid(int n)

{

//your code goes here

}

9

[5 points]

Grid<int> makeGrid(int n)

or

vector<vector<int>> makeGrid(int n){

//initialization of an n sized matrix.

Grid<int> matrix(n,n,0);

or

vector<vector<int>> matrix(n, vector<int>(n));

or

vector<vector<int>> matrix;

for(int i=0;i<n;i++) {

vector<int> vec;

for(int j=0;j<n;j++) {

vec.push_back(0);

}

matrix.push_back(vec);

}

//populating the Matrix in desired manner

int index=1;

for(int i=0;i<n;i++) {

for(int j=0;j<=i;j++) {

matrix[i-j][j] = index++;

}

}

for(int j=0;j<n;j++) {

for(int i=n-1;i>j;i--) {

matrix[i][j+n-i] = index++;

}

}

return matrix;

}

** The first (compact) method of initialization of matrix

declares a vector of vector of int with inner vector having

n integers and outer vector having n vectors each of size n integers.

10

8. Given two stacks of numbers s1 and s2, write a function
separateEvenOdd(stack<int> &s1, stack<int> &s2) which puts all
the odd numbers on s1 and all the even numbers on s2. You can
assume that initially all the numbers are in s1 (and s2 is empty). You
are not allowed to make use of any additional stacks or any other data
structures such as vectors or queues. It is okay to use a constant
number of temporary variables. Hint1: Can you think of an O(n2)
algorithm? Hint2: Initially, you can transfer all the elements at top of
s1 which are even to s2. Then, at each step, you can transfer one
even element from s1 to s2 at a time and transferring this one
element may involve multiple sub-steps.[5 points]

void separateEvenOdd(stack<int> &s1, stack<int> &s2)

{

while(!s1.empty() && (s1.top()%2 == 0))

{

s2.push(s1.top());

s1.pop();

}

int even_temp = 1;

while(true){

while(!s1.empty() && (s1.top()%2 == 1)){

s2.push(s1.top());

s1.pop();

}

if(!s1.empty()) {

even_temp = s1.top();

s1.pop();

}

else even_temp = 1;

while(!s2.empty() && (s2.top()%2 == 1)){

s1.push(s2.top());

s2.pop();

}

if(even_temp %2 == 0) s2.push(even_temp);

else break;

}

}

11

Recursive algorithm:

void separateEvenOdd(stack<int> &s1, stack<int> &s2)

{

int odd_tmp;

if(!s1.empty() && (s1.top()%2 == 0))

{

s2.push(s1.top());

s1.pop();

separateEvenOdd(s1, s2);

}

else if(!s1.empty() && (s1.top()%2 == 1))

{

odd_tmp = s1.top();

s1.pop();

separateEvenOdd(s1, s2);

s1.push(odd_tmp);

}

else

return;

}

12

