
Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Translation and Run-Time Validation of Loop
Transformations

COL731 Course Presentation

Kavya Chopra

IIT Delhi

Nov 2023

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Introduction

Validating SPOs

Validating SMOs

Runtime Validation

Conclusion

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Introduction

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Translation Validation

• Formally verifying compilers is difficult, due to a perpetually
evolving and bulky codebase.

• Solution: Instead of verifying the translator (in this case, the
compiler), verify the translation from the source to the target
instead after every run of the compiler.

• Explicitly Parallel Instruction Computing (EPIC) refers to
architectures in which features are provided to facilitate
compiler enhancements of instruction-level parallelism (ILP) in
all programs, while keeping hardware complexity relatively low .

• Compilers targeted at these architectures typically perform
more aggressive optimizations, especially those facilitating
parallelism, as the onus to schedule instructions is on the
compiler and not the CPU hardware

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Story so Far

• Alive: Verifies peephole optimizations
• Focuses more on “clever” mathematical/instruction-level

optimizations
• Doesn’t validate optimisations in which there’s greater variance

in program structure
• No support for constructs like loops and branches

• CoVaC: Verifies structure preserving optimizations.
• The framework demonstrated is mostly used for consonant

programs (each loop in the target program corresponds to a
loop in the source program), and uses simulation relations
between source and target code.

• Correspondence between certain points in the target and the
source are needed (cut-point mapping)

• Doesn’t validate transformations that modify structure in any
way (eg loop tiling)

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Dealing with Structure Modifying optimizations

• VOC64: Verifies structure modifying optimizations
• Here, we discuss loop reordering transformations, which change

the order of the execution of statements without adding to or
deleting from them (eg loop interchange and tiling)

• There’s no direct correspondence between control points in the
source and target code, so the CoVaC framework is difficult to
apply here.

• We define a set of “permutation rules”, that prove that the
reordered statements preserve the semantics. They, however,
require the ability to prove that 2 loop free code fragments are
equivalent, and this is something CoVaC does address, so we
abstract this functionality out as a simulation relation ~

• Additionally, these transformations may only be correct subject
to certain runtime checks, so we provide a mechanism to do
runtime validation as well.

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Validating SPOs

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Defining ~

• We wish to define a simulation relation between two program
fragments P and Q such that P ∼ Q implies that P and Q are
equivalent. We use a new rule, VALIDATE, to accomplish this.

• Transition Systems (TS): State machines characterised by:
• V: a set of state variables
• O ⊂ V: a set of observable variables
• Θ: an initial condition characterising the initial states of the

system
• ρ: a transition relation, relating a state to its possible successors

(edges)
• Each TS has a variable pc, which represents the program

location counter.
• We use the transition relations to determine a generalized

transition relation, which describes the effect of an execution
path of a program.

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Example

B0:
n <- 500
y <- 0
w <- w + 1
IF !(n >= w) GOTO B2
B1: ...
B2:

We have 2 transition relations associated with this block, namely

pc = B0 ∧ n′ = 500 ∧ y ′ = 0 ∧ w ′ = w + 1 ∧ n′ ≥ w ′ ∧ pc ′ = B1

pc = B0 ∧ n′ = 500 ∧ y ′ = 0 ∧ w ′ = w + 1 ∧ n′ < w ′ ∧ pc ′ = B2

The complete transition relation is the disjunct of all these
generalised transition relations.

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Some Notation:
• Computation: a sequence of states
• 2 transition systems are said to be comparable if we have a

bijective mapping between their observables
• A source state s is said to be compatible with a target state t

if s and t agree on their observables
• A TS Pt is said to be a correct translation/refinement of a TS

Ps if
1. Pt and Ps are comparable
2. For all computations in σs in source and σt in target such that

their initial states are compatible, σt terminates iff σs does,
and if they do terminate, their final states are compatible.

• Each TS has a cut-point set CP, which is a set of blocks that
includes all initial and terminal blocks, as well as atleast one
block from each of the cycles in the programs’ CFG.

• A simple path is a path connecting 2 cutpoints with no other
cut-point as an intermediate node.

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

The VALIDATE Rule

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Validating SMOs

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Notation

• Mathematical formulation of a loop:

for i⃗ ∈ I by < i do B(⃗i)

where
• I is the iteration space
• i⃗ denotes an iteration vector
• < i is the ordering by which the various points of I are

traversed.
• We can characterise I via inequalities
• I = {(i1, i2....im) | L1 ≤ i1 ≤ H1 ∧ L2 ≤ i2 ≤ H2... ∧ Lm ≤

im ≤ Hm}

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Notation: Contd

• Mathematical formulation of a loop transformation

for i⃗ ∈ I by < i do B(⃗i) =⇒ for j⃗ ∈ J by < j do B(F (⃗j))

where F is a transformation mapping J to I (and is generally
linear)

• Since these are reordering transformations and the number of
statements are preserved, we want | I |=| J |, and since we
should have only 1 instance in the target corresponding to each
instance in the source, we need F : J 7→ I to be a bijective
mapping. We can ensure this by defining an inverse mapping
F −1 : I 7→ J

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Examples

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

More Examples

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Permutation Rules

• Assume that we have a simulation relation between two
program fragments P and Q, where P ∼ Q denotes that the
result of executing P and Q starting from an arbitrary state is
the same (more on this later)

• ∼ is reflexive, transitive, and closed under sequential
composition, i.e. P ∼ Q =⇒ P; R ∼ Q; R

• We say that a transformation is valid when:
• F : J 7→ I is a bijective mapping.
• ∀i⃗1, i⃗2 ∈ I : i⃗1 < i i⃗2 ∧ ⃗F −1(i2) < j ⃗F −1(i1) =⇒ B(i⃗1); B(i⃗2) ∼

B(i⃗2); B(i⃗1)
• Intuitively, the second rule says that if we’re reversing the

relative order of execution 2 statements while moving from the
source to the target, then the result after their cumulative
execution should be the same.

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Soundness of permute:

Permute has 3 premises:

• To prove its soundness, we assume that the iteration space has
a given size (say m), and then assume that our transformation
is valid for a k-length prefix of the ordered iteration space, i.e.

for i⃗ ∈ Ik by < i do B(⃗i) ∼ for j⃗ ∈ Jk by < j do B(F (⃗j))

where
• I = {i⃗1, i⃗2....i⃗m} and i⃗1 < i i⃗2.... < i i⃗m
• Ik = {i⃗1, i⃗2....i⃗k}
• Jk = F −1(Ik)

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Soundness of permute (Contd):

for i⃗ ∈ Ik+1 by < i do B(⃗i) ∼ for i⃗ ∈ Ik by < i do B(F (⃗i)); B(⃗ik+1)

for i⃗ ∈ Ik by < j do B(⃗i); B(⃗ik+1) ∼

for j⃗ ∈ Jk by < j do B(F (⃗i)); B(⃗ik+1)

for i⃗ ∈ Ik by < j do B(F (⃗i)); B(⃗ik+1) ∼

for j⃗ ∈ Jk by < j do B(F (⃗i)); B(F (F −1(⃗ik+1)))

If F −1(⃗ik+1) ≻ j⃗ja where 1 ≤ a ≤ k, then we’re done, otherwise, we
find the minimal index l such that F −1(⃗ik+1) < j⃗jl , and then shift
F −1(⃗ik+1) between j⃗l−1 and j⃗l . This transformation is sound due to
P3 of PERMUTE , and proves the desired claim.

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Permute in Action: Loop Interchange

Consider the following example:

What conditions do we give to an automated theorem prover so that
it can validate this transformation?

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Specifying the transformation
1. Domains:

1.1 I = {(i , j) | 1 ≤ i ≤ N, 2 ≤ j ≤ M}
1.2 J = {(j , i) | 1 ≤ i ≤ N, 2 ≤ j ≤ M}

2. Relations:

(i1, j1) < i(i2, j2) ⇐⇒ (i1 < i2) ∨ ((i1 = i2) ∧ (j1 < j2))

(j1, i1) < j(j2, i2) ⇐⇒ (j1 < j2) ∨ ((j1 = j2) ∧ (i1 < i2))
3. Mappings:

F (j , i) = (i , j)
F −1(i , j) = (j , i)

4. Conditions:
∀(i1, j1), (i2, j2) ∈ I

(i1, j1) < i(i2, j2) ∧ (j2, i2) < i(j1, i1) =⇒
B(i1, j1); B(i2, j2) ∼ B(i2, j2); B(i1, j1)

where B(i , j) is a[i,j] = a[i-1, j-1]+ c

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Visual Explanation

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Permute in Action: Tiling

Consider the following example:

What conditions do we give to an automated theorem prover so that
it can validate this transformation?

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Specifying the transformation
1. Domains: I = {(i , j , k) | 1 ≤ i ≤ N, 1 ≤ j ≤ M, 1 ≤ k ≤ N}

J = {(ii , jj , kk, i , j , k) | 1 ≤ i ≤ N, 1 ≤ j ≤ M, 1 ≤ k ≤
N, ii ≤ i ≤ ii + c, jj ≤ j ≤ jj + c, kk ≤ k ≤ kk + c, ii ≡ 1
(mod c), jj ≡ 1 (mod c), kk ≡ 1 (mod c)}

2. Relations:

(i1, j1, k1) < i(i2, j2, k2) ⇐⇒ (i1 < i2)∨((i1 = i2)∧(j1 < j2))

∨((i1 = i2) ∧ (j1 = j2) ∧ (k1 < k2))

(ii1, jj1, kk1, i1, j1, k1) < j(ii2, jj2, kk2, i2, j2, k2) ⇐⇒ ((i1 < i2)∨

((i1 = i2) ∧ (j1 < j2)) ∨ ((i1 = i2) ∧ (j1 = j2) ∧ (k1 < k2)))∨

((i1 = i2) ∧ (j1 = j2) ∧ (k1 = k2) ∧ (ii1 < ii2))∨

((i1 = i2) ∧ (j1 = j2) ∧ (k1 = k2) ∧ (ii1 = ii2) ∧ (jj1 < jj2))∨

((i1 = i2)∧(j1 = j2)∧(k1 = k2)∧(ii1 = ii2)∧(jj1 = jj2)∧(kk1 < kk2))

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Specifying the transformation (Contd)

3. Mappings:
F (ii , jj , kk, i , j , k) = (i , j , k)

F −1(i , j , k) = (c∗⌊ i − 1
c ⌋+1, c∗⌊ j − 1

c ⌋+1, c∗⌊k − 1
c ⌋+1, i , j , k)

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Motivating a simplified Permute

• The current version of the Permute rule is a more general
statement than the typical dependence ordering rules we’ve
studied in class

• For instance, consider the following example:

• The theorem prover reasons purely on observable behaviour
instead of analyzing the data dependencies between arrays, so
it’d validate this correctly.

• However, since compilers don’t perform these kind of
transformations even if the observable behaviour between
source and target is the same, we simplify our permute rule

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

The simplified Permute Rule

where D is the array element corresponding to the “write”, U is the
array element corresponding to the “read”, and F is a bijection from
I to J . There are no other reads or writes to arrays in the loop.
Then, we have:

∀i⃗1, i⃗2 ∈ I : i⃗1 < i i⃗2 ∧ (D(i⃗1) = U(i⃗2) ∨ U(i⃗1) = D(i⃗2)∨

D(i⃗1) = D(i⃗2)) =⇒ ⃗F −1(i1) <j ⃗F −1(i2)

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Runtime Validation

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

What is Runtime Validation

• If neither the compiler nor a validation tool can ascertain if the
transformation is correct at runtime, then we use runtime tests
to do so.

• Eg: aliasing may inhibit the static dependence analysis that
loop optimizations rely on

• Two-fold job:
1. Determine when an optimization has generated incorrect code
2. Recover from the optimization without aborting the program or

producing a wrong result

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Formal Basis:

- P here is a permutation that determines the sequence of values
that the index variable takes on in the transformed loop,
i.e. P(i) = j iff the index variable takes on the value i in the jth
iteration of the transformed loop. - For this transformation, a
version of the simplified permute rule that addresses only flow
dependence is

∀i , j ≤ N | i < j ∧ D(i) = U(j) =⇒ P(i) < P(j)
- The complete rule, accounting for all dependencies is :
∀i , j ≤ N | i < j ∧ (D(i) = U(j) ∨ U(i) = D(j) ∨ D(i) = D(j)) =⇒

P(i) < P(j)
- We’ll just consider the one accounting for flow dependence for
simplicity

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Safety Properties of Runtime Validation:

1. The test must be able to determine, either precisely or
conservatively, if a dependence may be violated by the
optimized loop

2. Once a run-time test determines that a dependence may be
violated by the optimized loop, there must be an execution
path that can be taken to produce the correct result.

3. Testability Property : The run-time test must be able to
determine that a dependence may be violated before the
dependence has actually been violated. (This isn’t a hard
constraint; one can execute patch-up code that makes up for
the effect of the violation. But we impose it here for
generalisability.)

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Efficiency Issues for Runtime Validation

1. The runtime tests should occur as infrequently as possible
2. The test should be as inexpensive as possible, in terms of time

and space.
3. The cost of executing the loop when a potential dependence

violation is detected should be no greater than the cost of the
orginal (unoptimized) loop.

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

The Testability Property
It is this property that makes runtime validation particularly difficult,
otherwise we have a reasonably efficient way to check if the
transformed loop satisfies our initial flow-dependence constraint, aka

∀i , j ≤ N : i < j ∧ D(i) = U(j) =⇒ P(i) < P(j)

If we relax this, we have an algorithm that detects these dependence
violations

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Correctness

1. If k takes on a value i such that MARK[D(i)] contains a
non-zero value j , then it must be the case that D(i) = U(j)
because they produce the same index into the MAK array.
Further, since j was written into MARK[U(j)] before being read
as MARK[D(i)] by the algorithm, k must have taken on the
value j before it took on the value i . Therefore, P(j) < P(i).

2. If j > i , the rule is violated and the algorithm exits with failure.

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Pros and Cons
• Pros:

1. Similar Access Pattern: The loop index variable k accesses the
loop indices in the transformed loop’s manner.

2. The computation of D(k) and U(k) is the same computation
performed by the trans- formed loop.

• Cons:
1. Memory Overhead: It requires an additional array MARK of the

size of the actual array being accessed.
2. Testability Violated: In the cases where the rule is violated,

the algorithm doesn’t detect the violation until the write is
about to happen—which isn’t until after the read has already
occurred on a previous iteration.

• To satisfy the testability property, we would need to answer “Is
there a value j ∈ {P−1(i + 1), ..., P−1(N)} such that
j < P−1(i) and D(j) = U(P−1(i)) ?” in every ith iteration,
without computing D(j). For arbitrary function D and
permutation P, this is not possible.

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Restricting D
Consider the transformation:

Here, we see that D is simple and invertible

where test(i , r) = r < i ∧ P(r) > P(i)

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Expensive Tests?

• Since P is generated by the compiler itself, it can also generate
efficient code for the test specific to P.

• Loop Reversal:
test(i , r) = r < i

• Loop Interchange:

test((i1, i2), (r1, r2)) = (r1, r2) < (i1, i2) ∧ (r2, r1) > (i2, i1)

which reduces to
r1 < i1 ∧ r2 > i2

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Dynamic Loop Interchange

We insert the runtime test as follows:

where
(r1, r2) = (i1 − 1, j1 − k)

so
test((i1, i2), (r1, r2)) = r1 < i1 ∧ r2 > i2

which in turn reduces to
test((i1, i2), (r1, r2)) = k < 0

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Dynamic Loop Interchange: Recovery

On dependence violation, the program transfers control to escape
code, which turns out to be surprisingly nice in this case:

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Dynamic Tiling

Recovery was fairly straightforward in the previous example, but it is
suggested that in this example, we should just execute either the
original or the transformed loop in all its completeness.

For this transformation to be valid, we must have b ≤ k (k is a
variable whose value is unknown at compile time). So, we can jump
to the original loop if we have k < b, alternatively, we can modify b
to b = min(k, maxTileSize).

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Conclusion

Introduction Validating SPOs Validating SMOs Runtime Validation Conclusion

Conclusion
• Due to the emergence of new classes of processors that can

exploit ILP, and have hardware features that reduce the cost of
runtime tests and the compensation code when a dependence
violation is incurred, adding runtime tests to validate compiler
optimizations is becoming increasingly tractable.

• In VLIW/EPIC machines, there are specific features, such as
dynamic disambiguation (for optimised runtime aliasing checks),
and predication (executing if and else branches in parallel, and
only allowing the result to be written if the predicate is true)
that aid in testing and compensating for dependence violations.

• In summary, we’ve looked at Translation Validation of
structurally modifying optimizations, and for compilations
whose validity is difficult to check at compile time, we’ve also
looked at a run-time escape mechanism that completes the
computation in a slower, but guaranteedly correct manner on
encountering a dependence violation.

	Introduction
	Validating SPOs
	Validating SMOs
	Runtime Validation
	Conclusion

