Introduction Formalisms Cross-Product Constructions
(e} 0000000 0000 00000000

CoVaC

Compiler Validation by Program Analysis of the Cross-Product

Ramanuj Goel

November 9, 2023

CoVaC Tool
[e]

Introduction
[1o}

What is CoVaC

CoVaC is a dedutive framework for proving program equivalence, and also a tool
by the same name. Although the paper specifically talks about its uses for
verification of compilations, it can be generally used for proving equivalence of any
two programs.

Differences from what we've learned so far

® CoVaC is different from Alive. While Alive proves the correctness of
compilers, CoVaC proves the correctness of compilations.

® This means that while CoVaC can be used to test compilers, it cannot be used
to prove compilers like Alive. It can instead be used to prove correctness of
compilations.

® Furthermore, due to solving an easier problem than Alive, CoVaC is more
general and can work on more kinds of transforms.

® CoVaC is also different from Infer or ESC/Java. These tools help to test the
source code against bugs. CoVaC on the other hand will ensure that if the
source has bugs then so does the compiled code.

Introduction
oe

How it works

The implementation of CoVaC given in the paper works on intraprocedural
transformations (ie: changees within the same function).

Furthermore it requires that the source and target are structurally similar or
consonant, which we define formally later.

This means that passes like polly with tiling cannot be transformed. However
it is still more generalized than the peephole optimizations that are verified by
Alive.

At a high level, CoVaC creates a graph of the program (with instructions as
edges) for both the source and the target and then combines them together
in a "cross product”, so a node/edge in the new graph is a pair of nodes/edges
from the source and target program graph.

Because this method can potentially lead to a quadratic blowup and also have
incorrect edges (edges which are never used), CoVaC uses an SMT solver to
"Align the branches” as the graph gets created.

Formalisms
®000000

Transition Graphs

Now we formally define the model which is used by the paper.

We denote program as a list of functions as f; ... fn and also a main function.

Functions in the paper are represented as transition graphs. Each function can
be defined as a tuple of variables y, nodes (locations) A and labeled edges €.

The variables y contains three kinds of variables, X, Z and w. X are the
pass-by-value input variables. Z are the pass-by-reference input variables and
w are the local variables.

The nodes N are numbered 0 to k like: N = {r=ng,ny,...nx =t}. ngp =ris
the unique starting node while n, = t is the unique exit node. Every node is
on a path from r to t.

The edges & are directed and are labeled with instructions.
We use the notation E(¥) for a list of expressions over the variables y.

Formalisms
0O@00000

Instructions

The paper generalizes instructions into 4 kinds. These are:

* Guarded Assignments: Denoted as ¢ — [:= E(¥)], where cis a boolean
expression, U is a list of variables. It means that if ¢ is true then the variables i
are each assinged the expressions E()). If there is a boolean condition with
no assignments, we write c?.

® Function Calls: Denoted as f(E()), &). Here the first tuple of arguments,
E(y), are pass-by-value and the next, I, are pass-by-reference. The return
values are just returned using the pass-by-reference variables.

® Reads and Writes: Denoted as read(d) and write(d), they are used to denote
|0 operations.

A property which we require from the transition graphs is deterministic and
non-blocking. Deterministic means that for every node, the guards on all outgoing
edges are mutually exclusive. Non-blocking means that the disjunction of all
guards on all outgoing edges is a tautology.

Formalisms
00@0000

Example of a Transition Graph

We will take an example of a simple function written in psuedocode.

D true — [i = 0] D read(num)
def fl(count, &sum):

i=20 i > count? . counﬂ\L
read (num) ¢
while (i < count): i > count —
x = f2 (num+i) D(sum, i = (sum+x,i+1h f2(num + i, &x)
sum = sum + X
i=1i+1
write (sum)

(

i < count —

\L write(sum)
D [(sum, i) = (sum + x, i+ 1)]

Formalisms
0008000

States and Computations

A state is a pair (n; d) with the node nand d is the initialization on the values
y=(X2Zw).

A computation of a module is essentially a run of the module on some
specific input.

The paper defines a (£, {) — computation on a function f(¥, &Z) as its run with
the input ¥ = £and 7 = (.
A computation looks like:

o (r (& 71)) — (My; d1> 2y (Mp; o) ...

Here, T denotes uninitialized local variables while the labels of the arrows
(A, A2...) are the lables of the edges in the transition graph or the special
lable ret. Each transition must be justified by either an intra-procedural
transition, a call transition, or a return transition such that the call and return
transitions are balanced .

Cmp(f) denotes all the computations of a module f (or equivalently, a
transition graph f). For a procedural program A, we denote the set of
computations Cmp(.A) = Cmp(main)

Formalisms
0000e00

Observable variables

The correctness of a translation, which means equivalence of the source and the
target, depends upon the values which get assigned to the variables. However not
all values matter and we shouldn't really have a one-to-one mapping of varialbes in
the source and the target. Hence we define Vs as the set of observable variables
at a state s = (n, d) as:

® |f sis a state immediately after transition read(d), Vs 2 U

e If sis a state immediately before transition write(d), Vs 2 U

e If n=ris the entry node of procedure f(X,&Z2), Vs D XA Vs 2 Z
e If n= tis the exit node of procedure f(X,&Z),Vs 2 7

Intuitively, we wish to maintain that in both the source and target programs these
variables take the same values.

Formalisms
00000e0

Observation function

We also define an Observation function O which maps the states and labels (the
ones above arrows) of a computation to a common domain. O is defined as
follows:

® Forastates, if Vo =0then O = L

* For astate s = (n, d), if Vs # 0 then O = dy,, where d, is the restriction of d
on the variables Vs, so just the values of the variables Vs at that state.

® For alabel)\, if itis a label of a read, write, call (to procedure g) or return (from
procedure g) then O(\) takes the values read, write, cally and rety
respectively. Otherwise O(X) = L.

An observartion of a computation o, denoted o(o) is obtained by the application
of © on all states and labels of o. That is, for o : s —1s sp 22 S3... we get

o o
0(0) : 0(s1) 221, 0(sp) 222, o(sy) ...

Formalisms
000000

Correct translation

We define two computations o and ¢’ to be stuttering equivalent, denoted
o ~st o, if their observations o(c), o(c’) only differ from each other by a finite

. 1 L
sequence of pairs L —or — L.

Intuitively, for two computations to be stuttering equivalent, functions need to be
called in the same order with the same input parameters and also return the same
values, read calls should get the same inputs and write calls should write the same
outputs. We can have extra or fewer computations in between these things, but
that is ignored due to them translating to L. It is called "stuttering” because the
only way for a user to distinguish the two computations is the time taken, or
"stutter”.

fr is a correct translation of procedure fs if for every (£, ¢)-computation o in
Cmp(fr) there exists a (€, {)-computation s in Cmp(fs) such that o1 ~g o, and
vice-versa. Program 7 is a correct translation of program S if mainy is a correct
translation of mains.

Intuitively, 7 is a correct translation of S if for every computation for every input
on S we can have a stuttering equivalent computation in 7 on the same input.

Cross-Product
@000

Comparison Graphs

We assume that we have two programs, S and 7 which we have to prove
equivalent. For each pair of the corresponding source and target procedures

S = (y3,NS, %) and T = (y7 ,NT,£T) we define a comparison transition
graph f = (J,N,€) = fS K {7 as a graph which satisfies a specific set of 3 rules.
The collection of comparison graphs for all procedures constitutes the comparison
programC=SXT.

Rule1 (Structural Requirement)

@ The variables y = (X, Z, W) are concatenations of the variables of the source
and target programs, thatis: ¥ = XS o X7,Z=2502T andw = wS o w7
® Each node of f is a pair of source and target nodes: N' C N'S x N'7. The entry
and exit nodes are r = (rS,r7) and t = (t°,t7) respectively.
(op®;0pT) .
© Every edge of the graph ((n®,nT) ——"2 (mS,mT)) € £ should satisfy
one of these conditions:

s T
e (n° 2o mS)ees; (nm £ mT) e £T;and op® and op” have the same type
(either both reads, writes, assignments, or calls to procedures with the same name).
S
e (n° 2 mS) € £5 where 0p® is an assignment; n” = m” and op” = €
s
e (nT 22 mT) e €7 where op” is an assignment; n° = mS and op® = ¢

Here e = true?, equivalent to nop.

Cross-Product
0e00

Comparison Graphs

A composed transition (n; d) % (n’; 3’) in interpreted as a sequential
composition of the source and target transitions with one exception, which is
when e5; e are read(i); read(d”). Here the variables written by the read need
to have the same value in d’.

Given o in Cmp(f), we use ¢ ts to denote a path obtained by projection of o onto
the states and transitions related to module £S.

Rule 2 There doesn't exist o in Cmp(f) such that o ts or o 4 contain an infinite
sequence of e-transitions.

From Rule 1 and 2, we get:
Vo € Cmp(f) : (36° € Cmp(fS) : 05 ~g o ts) A (FoT € Cmp(fT) : 67 ~g o 17)

This means that every computation of the comparison graph has the
corresponding computation in both the source and the target. We would also like
the reverse to hold.

We say that the computations of an input system, say Cmp(f¢) are covered by
Cmp(f) when the following condition holds:

Vo € Cmp(f®,30 € Cmp(f) : o differs from o 1s by only finite padding

Padding is defined as e-transitions. This notion is stronger than stuttering
equivalence so it follows that ¢ ~g o s

Cross-Product
[e]e] o]

Comparison Graphs

Rule 3 Computations of S and computations of f7 are covered by Cmp(f).

This means that every run of programs that could have happened in the source or
the target can also happen in the combined comparison graph. Note that this
allows the comparison graph to discard some nodes/edges from the source or the
target if they are not reachable.

A comparison graph f = S K f7 is a witness of correct translation if for every
((€0€), (¢ o ¢))-computation of f, its target and source projections have equal
observations. As you can see, we restrict the input of f to be the same for both S
and 7.

Theorem 1 The target 7 is a correct translation of source function S iff there
exists a witness comparison graph f = S X {7, In addition, if 7 is a correct
translation of S then every comparison graph f = S K f7 is a witness of correct
translation.

Thus, in order to determine the correctness of translation, it is sufficient to
construct a comparison graph and check if itis, indeed, a witness.

Cross-Product
[eJele]]

Witness Verification Conditions

An assertion network ¢ = {¢n|n € locations of C} for a program C is said to be
invariant if for every execution of state (n; d) in a computation, d F ¢,. That is, on
every visit of a computation of node n, the visiting data state satisfies the
corresponding assertion ¢, associated with n.

If we have a comparison program C = S X 7 and can construct the strongest
invariant network for it, then we can generate and verify the Witness Verification
Conditions. If these are valid then they prove the correctness of translation. The
witness verification conditions are:

. ite(a);write(d”
® For a write edge n w» m, we check that the same values were
written:

on = (L7'S —_ *T)

g% (ES,u%);g" (ET i)

® Foracall edge n m, we check that the same arguments

were passed:

on = (ES=ET)A(@° =0")

e If nis the exit node of the transition graph S X f7 where S (x°,&Z) and
fT(x7T,&ZT) we check that the pass-by-reference values are same:

on = (2°=27)

Constructions
@0000000

Consonant Transition Graphs

For a transition graph f = (¥, N, £), we classify every node n € A to 6 types
(denoted 7(n)):

® Read (rd): If the outgoing edge from nis a read.

® Write (wt): If the outgoing edge from n'is a write.

Call (cl): If the outgoing edge from n'is a function call.
Branch (br): If n has multiple outgoing edges.

® Unconditional assignment (wa): If n has one outgoing edge which is an
assignment.

® Exit (t/): Whenn=1t.
We define a set of cut points, denoted P as:

PC{n:ne NAr(n)#wa} [Bug]

Every computation o defines a corresponding sequence of cut points, which is just
the nodes in ¢ intersection with P.

Constructions
O®@000000

Consonant Transition Graphs

We say that the graphs S and f7 are consonant if there exists a partial map

& : P+ PT such that VoS € Cmp(fS),s7 € Cmp(fT) :if o5 and o7 are defined
by the same input sequence and n§, n? ... and nf,n] ... are the cut point
sequences defined by o and o7, then x(n¥) = n] A 7(n¥) = r(n]).

Intuitively, this means that every cut point in S should map to a cut point in 7 such
that everytime we go through the cut point in the source, we also go through the
cut point in the target in the same order.

Note how consonence of transition graphs depends on the cut point sets that we
have chosen. If we take every branch to be a cut point then transforms like loop
inversion can not be considered consonant. However, decreasing the size of the
cut points (granularity) would make proofs harder. Technically, transforms like
tiling and loop interchange could also be proven equivalent if we took the cut point
set to not have any branches, however it would be hard for the theorem provers to
prove it.

I think a good choice for cut points would be loop heads, reads, writes and exit
nodes. Other branch nodes might be added to increase performance, but if they
result in the proof failing then we would need to remove them. Keeping loop
heads still would result in simple transformations like loop-reordering,
loop-fission/fusion or even moving one loop above another to be non-consonant.

Introduction Formalisms Cross-Product Constructions CoVaC Tool
0000000 0000 0O0e00000 [e]

Algorithm Compose

The psuedocode for algorithm compose, which constructs comparison graph is

given below:
n := (no's,noT); C.Nodes:={ng}; C.Edges:={}; WorkList := {ng};
while (!WorkList.isEmpty ()) {

n := WorkList.removeElement () ;

MatchList := matchEdges(n,S,7T);

if (MatchList == NULL) ABORT;

while (! MatchList.isEmpty()) {

€new := MatchList.removeElement ();

Ne = NewCEdge.toNode () ;
C.Nodes.add (ne) ;

C.Edges.insert (€new) ;
WorkList.add (ne) ;

WorkList.add (getDescendants (ne)) ;

Constructions
O00@0000

Function matchEdges

The function matchEdges used in the compose algorithm is supposed to take two
nodes and give all pairs of edges which "match” according to some rules, which are
given below:

e Same type matching: Given a node (nS, n7'), we match the outgoing edges
iff 7(nS) = 7(n7).

e Adding c-transitions: If 7(n°) = wa, we match the cource assignment edge
with an an e-transition to the target. The case for 7(n7) = wais handled
analogously.

e Raising error: If none of the rules are applicable to a node (n®,n7),
matchEdges will return NULL and the construction of C is aborted.

This function isn't complete right now, as it requires branch alignment, however it
is instructive to see how the algorithm works with the given code.

Constructions
0O000e000

Compose Example

Source:

(I <10 AK < 0) = (MEM[P + 1],) := (I + (MEM[A] + 5) * K, | + 1)

[0 } , (0, 5)\ read(K, MEM[A]) I > 107 write(MEM[P]) { 4]

(I <10 A K > 0) — (MEM[P + I}, I) := (I « (MEM[A] + C) % K, I + 1)

Target:

i,u:=

: : d(k, , k * (mem[a] + 5 i =107 ite
0 read(mem[alL write(mem[p]) { 4]

(i < 10) — (mem[p + i, i) := (i % u, i+ 1)

Constructions
00000800

Compose Example

Source:

(1< 10 A K < 0) > (MEMIP 4 0, 1) = (1 (MEMA] + 5) K, 14 1)

Target:

(1< 10) = (memlp + 11, 1) = (1= u, i +1)
(1< 10 A K > 0) — (MEM[P 4 1], 1) -= (I« (MEMIA] + C) » K, 14 1)

Worklist = {(0,0)}
Matchlist = {}

Introduction Formalisms Cross-Product Constructions CoVaC Tool
[o]e] 0000000 0000 00000800 [e]

Compose Example

Source: Target:

(1< 10 A K € 0) (MEMIP 4 1) := (1 (MEMIA] +5) K, 14 1)

wite{meriz)

(1< 10) = (memip + 1,1) = (i = v, 4 1)
(1< 10 A K > 0) — (MEM[P 4 1], 1) -= (I« (MEMIA] + C) » K, 14 1)

Worklist = {}
Matchlist = {((0 — 1),)}

Constructions
00000800

Compose Example

Source:

(1< 10 A K < 0) = (MEMIP + 0.1 := (1= (MEMUA] + 5) « K, 1+ 1)

(1< 10) = (memlp 111, 1) = (1 u,i 4 1)

(1< 10 A K > 0) — (MEMIP 1 1) := (1« (MEMIA] + ©) » K, 1+ 1)

Worklist = {(1,0)}
Matchlist = {}

. (1, 0) :(0.5)E .
e

Constructions
00000800

Source:

(1< 10 A K < 0) (MEMIP + 1) = (1 = (MEMIA) +5) « K. 14.1)

road(K. MEMIZ)

(< 10) = (memip +11,1) = (1= u,i 4 1)
(1< 10 A K > 0) — (MEMIP 1 1) := (1« (MEMIA] + ©) » K, 1+ 1)

Worklist = {}
Matchlist = {{((1 — 2),(0 — 1))}

. (1, 0) :(o,5)E .
e

Constructions
00000800

Compose Example

Source: Target:

(1< 10 A K < 0) > (MEMIP + 1, 1) := (/= (MEMA] +5) « K, 1+ 1)

wite{memiz)

(1< 10) — (memip + 11 1) = (1= u,i 4 1)

(1< 10 A K > 0) = (MEMIP + 1,) = (1« (MEMIA] + ©) » K, 1+ 1)

Worklist = {(2,1)}
Matchlist = {}

read(K, MEM[A])
read(k, mema])

(1,C) = (0,5)

roduct Constructions
00000800

ductior

Compose Example

Source: Target:

(1< 10 A K < 0) > (MEMIP + 1, 1) := (/= (MEMA] +5) « K, 1+ 1)

J

(1< 10 A K > 0) = (MEMIP + 1,) = (1« (MEMIA] + ©) » K, 1+ 1)

wite{memip)

road(, memja)

(1< 10) — (memip +1.1) == (i = 0.1+ 1)

Worklist = {}
Matchlist = {(e, (1 — 2))}

read(K, MEM[A])
read(k, mema])

(1,C) = (0,5)

Constructions
00000800

Compose Example

Source: Target:

(1< 10 A K < 0) > (MEMIP + 1, 1) i= (/= (MEMIA] +5) « K, 1+ 1)

(1< 10) — (memip+ 11 1) = (1= u, i+ 1)

(1< 10 A K > 0) = (MEMIP + 1],) = (1« (MEMIA] + C) » K, 1+ 1)

Worklist = {(2,2)}
Matchlist = {}

(1) == (0. k « (mem(a] + 5))

read(K, MEM[A])
read(k, mema])

Constructions
00000800

Compose Example

Source: Target:

(<10 A K < 0) > (MEMIP + 1, 1) := (/= (MEMIA] +5) « K, 1+ 1)

J

(1< 10) = (memip + 1, 1) = (1= u,i + 1)

(1< 10 A K > 0) — (MEMIP + 1, 1) = (1« (MEMIA] + C) K, 1+ 1)

Worklist = {}
Matchlist = {{(2 — 3),(2 — 3)), ((2 = 3),(2 — 2)),((2 3> 2),(2 — 3)),
(2%2),2-2)(252),@-3),(212),2-2))

((u u) := (0, k * (mem[a] + 5))

read(K, MEM[A])
read(k, mema])

Constructions
00000800

Compose Example

Source: Target:

(1< 10) — (memlp + 1, 1) = (1= u, i +1)

(1< 10 A K > 0) = (MEM[P 4 1],) -= (1« (MEMIA] + C) » K, 14 1)

Worklist = {(2,2)}
Matchlist = {{(2 — 3), (2 — 3)), ((2 = 3), (2 — 2)),((2 3> 2),(2 = 3)),
(23%2),2-2)(252),@-23))

(I <10 A K < 0) = (MEM[P + I}, 1) := (I (MEM[A] +5) » K, [+ 1)
(i < 10) — (memip + 1],) = (i * u, i+ 1)

(o) == (0. k x (mem(a] + 5))

read(K, MEM[A])
read(k, mema])

Constructions
00000800

Compose Example

Source:

Target:

(1< 10) — (memip + 11, 1) = (1= u,i 4 1)

(1< 10 A K > 0) = (MEMIP + 1],) = (1« (MEMIA] + C) = K, 1+ 1)

Worklist = {(2,2), (2,3)}
Matchlist = {{(2 = 3), (2 = 3)), (2 = 3), (2 = 2)), (2 % 2), (2 = 3)),
(2% 2),(2—2))}

(I <10 A K < 0) = (MEM[P + I}, 1) := (I » (MEM[A] + 5) % K, | + 1)
(i < 10) — (memlp + 1], i) := (i * u, i +1)

(i 0) = (0, k = (mem{a] + 5))

read(K, MEM[A])
read(k, memal)

(1.C) = (0.5) (1 <10 A K < 0) — (MEMIP + 1],) i= (1« (MEMIA] +5) = K, 1+ 1) | 2,3

(i = 10y

Constructions
00000800

Compose Example

Source:

(1< 10 A K < 0) s (MEMIP 4 1. 1) i= (1= (MEMIA] +5) « K, 1+ 1)

read(K. MEMIQ) >0 wite(MEMIF)]

(e id1)

(1< 10) — (memip + 1, 1)

(1< 10 A K > 0) — (MEMIP + 1], 1) = (1 (MEMIA] + C) = K, 1+ 1)

Worklist = {(2,2), (2, 3)}
Matchlist = {((2 — 3), (2 — 3)), (2 = 3), (2 = 2)), (2 3 2), (2 — 3))}

(I <10 A K < 0) = (MEM[P + I}, 1) := (I = (MEM[A] +5) * K, [+ 1)
(i < 10) — (memip + 1], i) == (i % u, i+ 1)

(1) = (0 k x (mem(a] + 5))

read(K, MEM[A])
read(k, mema])

(I <10 A K < 0) — (MEMP + 1], 1) := (I = (MEM[A] + 5) % K, [+1)

(1,) == (0,5)
e (i = 10y

(I <10 A K > 0) — (MEM[P + 1], 1) := (I = (MEM[A] + C) * K, I + 1)
(i < 10) — (memlp + 1], i) := (i * u,i+ 1)

Compose Example

Source: Target:

(1< 10 A K < 0) > (MEMIP 4 1. 1) := (1 (MEMIA] + 5) K, 14 1)

(I <10 A K < 0) — (MEM[P + I}, I) := (I + (MEM[A] +5) % K, | +
(i < 10) — (memp + 1], 1) == (i * u, i+ 1)

read(K, MEM[A])

Constructions
00000800

0. k + (memia) + 5

1)

read(k, memial)

(i > 10)?

(I <10 A K > 0) — (MEM[P + 1], 1) :== (I = (MEM[A] + C) * K, I + 1)

(I <10AK <
(i > 10y

(I <10 A K > 0) — (MEM[P + 1], 1) := (I = (MEM[A] + C) * K,
(i < 10) — (mem[p + 1], i) := (i * u, i+ 1)

0) — (MEM[P +), 1) := (I = (MEM[A] + 5) » K, [+1)

1+1)

2,3

Constructions
00000800

Compose Example

Source:

(1< 10 A K < 0) > (MEMIP 4 1. 1) := (1 (MEMIA] + 5) K, 14 1)

0. k + (memia) + 5

(1< 10) — (memlp + 1, 1) = (1= u, i +1)

(I <10 A K < 0) — (MEM[P + I}, I) := (I« (MEM[A] + 5) % K, [+ 1)
T

(i < 10) — (mem[p + 1), i) := (i u, i +
(=10
(i < 10) — (memlp+11.7) := (i v, i+ D[3 o
s

read(K, MEM[A])

read(k, memial)

(I <10 A K > 0) — (MEM[P + 1], 1) :== (I = (MEM[A] + C) * K, I + 1)
(i > 10)?

(I <10 A K < 0) = (MEM[P + 1), 1) := (I = (MEM[A] +5) * K, [+1)
(i = 10)?

(I <10 A K > 0) — (MEM[P + 1], 1) := (I = (MEM[A] + C) * K, I + 1)
(i < 10) — (mem[p + 1], i) := (i * u, i+ 1)

2,3

Constructions
00000800

Compose Example

Source:

(1< 10 A K < 0) = (MEMIP 4 1.1

U (MEMIA) +5) + K, 14 1)

0. k + (memia) + 5 wite(merip)

(1< 10) = (memlp + 11, 1) = (1= u, i +1)
(1< 10 A K > 0) — (MEMIP 4 1, 1) := (1« (MEMIA] + C) » K, 14 1)

Worklist = {(2,2), (2,3),(3,2),(3,3)}
Matchlist = {}

(1 <10 A K < 0) — (MEMP + 1, 1) =

(1 % (MEM[A] + 5) % K, I +1)
(i < 10) — (memp + 1], 1) == (i * u, i+ 1)

(i, u) == (0, k = (mem[a] + 5)) (1= 10y
(i < 10) — (memlp+11.7) := (i = v.i+ D[3 o T
s
(1 =10y
read(K, MEM[A]) (i > 10y
read(k, mema])

(I <10 A K > 0) — (MEM[P + 1], 1) :== (I = (MEM[A] + C) * K, I + 1)
(i > 10)?

(1 <10 A K < 0) — (MEMIP + 1], 1) = (1= (MEM[A] +5) « K, 1+ 1) | 2,3
(i > 10y

(I <10 AK > 0) — (MEM[P + 1, 1) :=

(1= (MEMIA] + C) » K, I+ 1)
(i < 10) — (mem[p + 1], i) := (i * u, i+ 1)

Constructions
00000800

Compose Example

Source: Target:

(1< 10 A K < 0) > (MEMIP 4 1. 1) := (1 (MEMIA] + 5) K, 14 1)

0. k + (memia) + 5

(1< 10) — (memlp + 1, 1) = (1= u, i +1)

(1< 10 A K > 0) — (MEMIP 4 1, 1) := (1« (MEMIA] + C) » K, 14 1)

Worklist = {(2,2),(2,3),(3,3)}
Matchlist = { ERROR}

(I <10 A K < 0) — (MEM[P + I}, I) := (I« (MEM[A] + 5) % K, [+ 1)
i+1)

(i < 10) — (memp + 1], 1) == (i * u, i
(=10
(i < 10) — (mem[p + 1], i) :(r»«u.l+|). T

(1 =10y
(i > 10y

(E/', u) == (0, k = (memla] + 5))

read(K, MEM[A])

read(k, mema])
N, 1) = (I« (MEMIA] + C) = K, [+ 1)

(I <10 A K > 0) — (MEM[P
(i > 10)?

(I <10 A K < 0) = (MEM[P + 1), 1) := (I = (MEM[A] +5) * K, [+1)
(i = 10)?

(I <10 A K > 0) — (MEM[P + 1], 1) := (I = (MEM[A] + C) * K, I + 1)
(i < 10) — (mem[p + 1], i) := (i * u, i+ 1)

2,3

Constructions
O00000e0

Branch Alignment

We use the technique of branch alignment to solve the issue of spurious edges
being added to the composed graph.

® Assume that we have an algorithm InvGen(f) that, given a partially
constructed graph fx, obtained after the kth iteration of compose, outputs a
set of invariants {¢|n € locations of f}.

® We match a pair of edges (e°,e7) € £5 x £, where e° and 7 are guarded
by ¢ and ¢7 respectively iff ¢n,m A ¢ A cT is satisfiable.

° If ofXis the |nvar|ant generated on the fully constructed graph on location n,
for any k, ¢ is an underapproximation of o/, ie, ok — ©f,

Theorem 2 The following properties are satisfied by compose:
® Termination: The algorithm compose terminates.

¢ Soundness: If compose succeeds then the resulting graph f = fS X f7 is a
correct comparison graph.

® Completeness: Given a strong enough InvGen, compose succeeds in
construction of a comparison graph.

Constructions
O000000e

Compose Example

Source: Target:

(1< 10 A K < 0) - (MEMIP 4 1. 1) i= (1= (MEMIA] +5) « K, 1+ 1)

(< 10) = (memip + 1.1) = (G + 0,7+ 1)

(1< 10 A K > 0) — (MEMIP + 1],) = (1« (MEMIA] + C) = K, 1+ 1)

Invariants
® o0 = (MEM =
mem)AN(A=a)A(P=
Worklist = {(0,0)} P)AN(AE[P...P+9])
Matchlist = {}

Introductior Constructions CoVaC Tool

O000000e

Compose Example

Source:

(1< 10 A K < 0) - (MEMIP 4 1. 1) i= (1= (MEMIA] +5) « K, 1+ 1)

Target:

(1< 10) — (memip + 11, 1) = (1 u,i 4 1)
(1< 10 A K > 0) — (MEMIP + 1],) = (1« (MEMIA] + C) = K, 1+ 1)

Invariants
® o0 = (MEM =
mem)A(A=a)A(P=
Worklist = {} P)AN(AE[P...P+9)])
Matchlist = {{((0 — 1), ¢)}

Constructions
O000000e

Compose Example

Source:

(1< 10 A K < 0) - (MEMIP 4 1. 1) i= (1= (MEMIA] +5) « K, 1+ 1)

Target:

(1< 10) — (memip + 11, 1) = (1 u,i 4 1)

(1< 10 A K > 0) — (MEMIP + 1],) = (1« (MEMIA] + C) = K, 1+ 1)

Invariants

® o0 = (MEM =
mem)A(A=a)A(P=
Worklist = {(1,0)} P)AN(AE[P...P+9])

Matchlist = {} ® pio=wooAN(I=0)A(C=
5

. (1,) == (0, 5)E .

Introductior Forma

Compose Example

Source: Target:

(1< 10 A K < 0) > (MEMIP + 0. 1) := (1« (MEMUA] + 5) « K, 14 1)

Invariants
® o0 = (MEM =
' mem)A(A=a)A(P=
Worklist = {} P)AN(AE[P...P+9])

Matchlist = {((1 — 2),(0 — 1))}

. (1, 0) :(0.5)E .

® p1i0=pooAN(I=0)A(C=
5

Constructions CoVvaC
O000000e [e]

Too

Constructions
O000000e

Compose Example

Source: Target:

(1< 10 A K < 0) - (MEMIP 4 1. 1) i= (1= (MEMIA] +5) « K, 1+ 1)

(< 10) = (memip + 1.1) = (G + 0,7+ 1)

(1< 10 A K > 0) — (MEMIP + 1],) = (1« (MEMIA] + C) = K, 1+ 1)

Invariants
Workli§t ={(2,1)} ® 0,0 :/\(A/,IL\EA:/’ = o
Matchlist = {} Z;eX?A é - ﬁ)Pig])

® p1i0=pooAN(I=0)A(C=
5

read(K, MEM[A])
read(k, memal)

® w21 =p10N(K=kK)

(/,C) = (0,5)

Constructions
O000000e

Compose Example

Source: Target:

(1< 10 AK < 0) —» (MEMIP 4 1.1 i (I« (MEMIA) +5) « K, 1+1)

()u 0= .5 (@) read(K, MEMIG)

Invariants
i = (MEM =
Worklist = {} ® w00 = (
Matchlist = {(e, (1 — 2 mem) A (A=a)A\ (P =
e (1 =20} P)YA(AZ[P...P+9])

® p1i0=pooAN(I=0)A(C=
5

read(K, MEM[A])
read(k, memal)

® 21 =¢10N(K=k)

(1.C) = (0.5)

Constructions
O000000e

Compose Example

Source: Target:

(1< 10 A K < 0) > (MEMIP + 1, 1) := (1= (MEMA] +5) « K, 1+ 1)

Invariants
Worklist = {(2,2)} ® o0 = (MEM =
Matchlist = {} mem)AN(A=a)A(P =

PYAN(AE[P...P+9])
° §;70:¢070/\(I:O)/\(C:

(1) = (0. k « (mem(a] + 5))

® w21 =p10A(K=kK)

® woo =i AN(i=0)A(u=
k = mem|[a] + 5)

read(K , MEM[A])
read(k, mema])

Constructions
O000000e

Compose Example

Source: Target:

(1< 10) — (memip +1.1) == (1= 0.1+ 1

(<t 0,0 = (1 (MEMIA] + C) » K, 14 1)

Invariants
Worklist = {} ® o0 = (MEM =
Matchlist = {((2 2 2), (2 — 2))} mem) A (A= a) A (P =

P)AAEIP.. P+9])
® p10=po o0 AN(I=0)A(C=

(i, u) == (0, k = (mem[a] + 5))
5

® 21 =¢10N(K=k)

. ® oo =21 AN(I=0)A(Uu=

k * mem|a] 4 5)

read(K, MEM[A])
read(k, mema])

@22 A1 <10AK >0)A (i < 10) is SAT

Constructions
O000000e

Compose Example

Source: Target:

(1< 10) = (memip + 1. 1) == (i v, 41

(<t 0,0 = (1 (MEMIA] + C) » K, 14 1)

Invariants
Worklist = {} ® o0 = (MEM =
Matchlist = {((2 2 2), (2 — 2))} mem) A (A= a) A (P =

P)AAEIP.. P+9])
® p10=po o0 AN(I=0)A(C=

(i, u) == (0, k = (mem[a] + 5))
5

® 21 =¢10N(K=k)

. ® oo =21 AN(I=0)A(Uu=

k * mem|a] 4 5)

read(K, MEM[A])
read(k, mema])

@a2 A (I <10AK > 0) A (i > 10) is UNSAT

Constructions
O000000e

Compose Example

Source: Target:

(1< 10) — (memip +1.1) == (1= 0.1+ 1

(1< 10 A K > 0) = (MEMIP + 1],) = (1« (MEMIA] + C) = K, 1+ 1)

Worklist = {} Invariants
Matchlist = {((2 2 2), (2 — 2)), . ﬁ()é(f)n):/\(%EA:/’.a:)A(P:
(2-2),2-2)} PYAAEIP...P+9])
® p10=wo o0 N(I=0)A(C=
(i) = (0, k + (memlal + 5)) 5)

® 21 =¢10N(K=k)

—>. ® w2 =21 A(i=0)A(u=
k * mem|a] 4 5)

read(K, MEM[A])
read(k, memal)

w22 AN(I <10AK <0) A (i < 10)is SAT

Constructions
O000000e

Compose Example

Source: Target:

(1< 10) = (memip + 1. 1) == (i v, 41

(1< 10 A K > 0) = (MEMIP + 1],) = (1« (MEMIA] + C) = K, 1+ 1)

Worklist = {} Invariants
Matchlist = {((2 2 2), (2 — 2)), . ﬁ()é(f)n):/\(%EA:/’.a:)A(P:
(2-2),2-2)} PYAAEIP...P+9])
® p10=wo o0 N(I=0)A(C=
(i) = (0, k + (memlal + 5)) 5)

® 21 =¢10N(K=k)

—>. ® w2 =21 A(i=0)A(u=
k * mem|a] 4 5)

read(K, MEM[A])
read(k, memal)

@22 A(I<10AK < 0)A (i > 10) is UNSAT

Constructions
O000000e

Compose Example

Source: Target:

1.0 =05 O‘ read, MEMIA) > 107 e "
—J

(1< 10 A K > 0) = (MEMIP + 1],) = (1« (MEMIA] + C) = K, 1+ 1)

(1< 10) — (memip + 11, 1) = (1= u,i 4 1)

Worklist = {} Invariants
Matchlist = {((2 2 2), (2 — 2)), . ﬁ()é(f)n):/\(%EA:/’.a:)A(P:
(2-2),2-2)} PYAAEIP...P+9])
® p10=wo o0 N(I=0)A(C=
(i) = (0, k + (memlal + 5)) 5)

® w21 =p10A(K=KkK)

ﬂ ® woo =21 A(I=0)A(u=
k = mem|[a] + 5)

read(K, MEM[A])
read(k, memal)

w22 A (I >10) A (i < 10) is UNSAT

Constructions
O000000e

Compose Example

Source: Target:

(1< 10) = (memip + .1) = (i = 0.1+ 1)

Worklist = {} Invariants

i 2 o = (MEM =
MatﬁhHSt:{«z 2@~ 2), ﬁoé(r)n)A((A: a)A(P=
(25 2),(2—-2)} DAALEP . Pt

. ® p10=po0AN(=0)A(C=
(i, u) = (0, k = (memfa] + 5)) 5

® w21 =p10N(K=kK)

—>. ® woo=p2 1 A(I=0)A (U=
k * mem[a] + 5)

read(K, MEM[A])
read(k, mema])

(1,€) = (0,5)

@22 A (I >10) A (i > 10) is UNSAT

Constructions
O000000e

Compose Example

Source: Target:

(1< 10) — (momip + 1,1 = (1= u,i + 1)

(1< 10 A K > 0) — (MEMIP + 1,1 = (1« (MEMIAL + C) K, 1+ 1)

Invariants
® o0 = (MEM =
mem)AN(A=a) A (P =
(/<‘°/\K<0)4’(MEM[P+’J’)—(l*(MEM[A] 5) x K, [+1) p)A(A¢[P---P+9])
AL ° ?,0 =@ o A(/=0)A(C=

= (0. k *

Worklist = {(2,2)}
Matchlist = {((2 2 2), (2 — 2))}

v (mem[a] + 5))

® w21 =p10A(K=kK)

® poo=pooA(i=NA(u=

k x mem|a] + 5)

read(K, MEM[A])
read(k, mema])

(1,) == (0,5)

Constructions
O000000e

Compose Example

Source:

(1< 10 A K < 0) > (MEMIP 4 1. 1) := (1 (MEMIA] + 5) K, 14 1)

(1< 10 A K > 0) — (MEMIP + . 1) = (1 + (MEMIA] + C) K, 14 1)

Worklist = {(2,2)}

Matchlist = {} Invariants
® o0 = (MEM =
$/< ‘lg)/\ K(< 0)[% (]ME)M[F(Jrq) ,(/)*(MEM[A] 5) = K, I+ 1) mem) A (A — a) A (P —
i< — (memp +], 1) == (i * u,i+1
. PYA(AZ[P...P+9])
(i, u) = (0, k * (mema] + 5)) ® p10=pooN(/=0)A(C=
5
read(K, MEM[A]) ° Y21 = P10 A (K _ k)

read(k, memial)

® pa2=wpooN(i=NA(u=
k «+ mem|a] + 5)

(I <10 AK > 0) = (MEM[P + I}, I) := (I« (MEM[A] + C) = K, I + 1)
(i < 10) — (memp + i], i) = (i * u, i+ 1)

Constructions
O000000e

Compose Example
Source: Target:

(110 A K< 0) o (HEMIP 5 1,1 = (1= GHEWA 59+ K, 1+ 1)
aadth, momiay @ *+ (menia + ERN o L N o
J

(1< 10) — (momip + 1,1 = (1= u,i + 1)

(1< 10 A K > 0) = (MEMIP 1], 1) := (1« (MEMIA] + C) « K, 1+ 1)

Worklist = {})
Matchlist = {} Invariants
® o0 = (MEM =
S ey e 9 mem) A (A=a) A (P =
. PYAN(AEIP...P+9])
o ® pio=pooN(l=0)A(C=

read(K, MEM[A])

® w21 =p10AN(K=kK)

read(k, mema]) 2,2
® oo =wooN(i=NNA(u=
.C) = (0.5) K * mem[a] + 5)
(1 <10 AK > 0) — (MEMIP + 1], 1) = (I = (MEM[A] + C) = K, I + 1)

(i < 10) — (memip + 1], 1) == (i * u, i+ 1)

This edge is already done

Constructions

00000008
Compose Example
Source: Target:
(<104 K < 0) 5 (MEMP+ 1) = 1= (MEMIAL+ 5) « K. 1+ 1)
@M@})k'www sg o _@ - @
(<100 (momlp + 1.0 — G- 00i 1)
(110 7 >)+ (MEMIP 1 1,1) = (1 + (MEMIA + O) + .14 1)
Worklist = {} I iant
Matchlist = {} nvariants
® 0,0 = (MEM =
:/ < :g)A K(g o)[; (]ME)M[P(JrI].I) ::l)»«(MEM[A]AS)xK.IJrI) mem) A (A = a) A (P =
< — (mem[p + i), i) == (i = u, i+
: P)A(AEIP...P+9))
(i, u) == (0, k * (mem[a] + 5)) ° 991,0:‘P0,0/\(l20)/\(c:

read(K, MEM[A])
read(k, memal)

® w21 =p10AN(K=kK)

® oo =wooN(i=NNA(u=
.C) = (0.5) K * mem[a] + 5)

(I <10 A K > 0) — (MEM[P + I}, 1) := (I + (MEM[A] + C) = K, I + 1)
(i < 10) — (memip + 1], 1) == (i * u, i+ 1)

@22 A(I<10AK >0)A (i > 10) is UNSAT

Constructions

0000000
Compose Example
Source: Target:
@M@*"”’"‘“‘ 59 o @ wietnanis) @
(i < 10) — (memip + 1, 1) := (i = u, i + 1)
Worklist = {} I iant
Matchlist = {} nvariants
® 0,0 = (MEM =
:/ < :g)A K(g o)[; (]ME)M[P(JrI].I) ::l)»«(MEM[A]AS)xK.IJrI) mem) A (A = a) A (P =
< — (mem[p + i}, i) = (i = u, i +
: P)A(AE[P...P+9))
(i, u) = (0, k = (mema] + 5)) ® pio=pooN(l=0)A(C=

read(K, MEM[A])

® w21 =p10AN(K=kK)

read(k, mema]) 2,2
® oo =wooN(i=NNA(u=
.C) = (0.5) K * mem[a] + 5)
(1 <10 AK > 0) — (MEMIP + 1], 1) = (I = (MEM[A] + C) = K, I + 1)

(i < 10) — (memip + 1], 1) == (i * u, i+ 1)

This edge is already done

Constructions

00000000
Compose Example
Source: Target:
0 O—=0 MO0
(i < 10) — (memip + 1, 1) := (i = u, i + 1)
Worklist = {} I iant
Matchlist = {} nvariants
® 0,0 = (MEM =
:/ < :g)A K(g o)[; (]ME)M[P(JrI].I) ::l)»«(MEM[A]AS)xK.IJrI) mem) A (A = a) A (P =
< — (mem[p + i}, i) = (i = u, i +
: P)A(AE[P...P+9])
(i, u) = (0, k = (mema] + 5)) ® pio=pooN(l=0)A(C=

read(K, MEM[A])
read(k, memal)

® w21 =p10AN(K=kK)

® oo =wooN(i=NNA(u=
.C) = (0.5) K * mem[a] + 5)

(I <10 A K > 0) — (MEM[P + I}, 1) := (I + (MEM[A] + C) = K, I + 1)
(i < 10) — (memip + 1], 1) == (i * u, i+ 1)

@22 A(I<10AK < 0)A (i > 10) is UNSAT

Constructions
O000000e

Compose Example
Source: Target:

(110 A K< 0) o (HEMIP 5 1,1 = (1= GHEWA 59+ K, 1+ 1)
aadth, momiay @ *+ (menia + ERN o L N o
J

(1< 10 A K > 0) — (MEMIP 1 1, 1) = (1 « (MEMIAL + C) = K, 1+ 1) (1< 10) — (memlp+], i) = (1= u,i-+1)
Worklist = {} | e
Matchlist = {} nvariants
® 0,0 = (MEM =
:/ < :g)A K(< 0)[; (]ME)M[P(JrI].I) ::l)»«(MEM[A]AS)xK.IJrI) mem) A (A — a) A (P —
i< — (memp + 1], i) == (i * u, i +
. PYAN(AEIP...P+9])
(i, u) := (0, k = (mem[a] + 5)) ° (,O1yo=<p0’0/\(I:O)/\(C:

read(K, MEM[A])

® w21 =p10N(K=k)

read(k, mem|a]) 2,2
® woo=pooAN(I=NA(u=
(/,C) == (0,5) K * mem[a] + 5)
(1< 10 A K > 0) — (MEMP +), 1) := (I « (MEMIA] + C) = K, I +1)

(i < 10) — (memp + 1, i) :== (i % u, i + 1)

w22 A(I>10) A (i < 10) is UNSAT

Constructions
O000000e

Compose Example
Source: Target:

(1< 10 A K < 0) = (MEMIP+ 1,1 i= (I + (MEMIA| +5) « K, 1+ 1)

o N wsmentn)
O €

Cr==0

(1< 10) — (memlp + 1], i) := (i = u. i+ 1)
Worklist = {})
Matchlist = {{(2 — 3), (2 — 3))} Invariants
® o0 = (MEM =
2 e e g v o mem) A (A = a) A (P =
. PYAN(AEIP...P+9])
o ® pio=pooN(l=0)A(C=

read(K, MEM[A])

® w21 =p10N(K=k)

read(k, mema]) 2,2
® woo=pooAN(I=NA(u=
(/,C) == (0,5) K * mem[a] + 5)
(1< 10 AK > 0) — (MEM[P + I}, I) := (I + (MEM[A] + C) = K, 1+ 1)

(i < 10) — (memp + 1, i) :== (i % u, i + 1)

@22 A (1 >10) A (i > 10) is SAT

Constructions
O000000e

Compose Example

Source: Target:

(1< 10 A K < 0) > (MEMIP {1 1) := (1= (MEMIA] +5) « K, 14 1)

< 10) — (memlp +1,0) = (= w,i 4 1)

(1< 10N K > 0) — (MEMP + . 1) = (1« (MEMIA] + €) = K, 14 1)

Worklist = {(3,3)} .
Matchlist = {} Invariants
® 0,0 = (MEM =
(I <10 A K < 0) — (MEMIP + 1], 1) := (I » (MEM[A] +5) = K, | + 1) mem) A (A — a) A (P —
(i < 10) — (memlp +], i) := (i * u, i + 1)
P)A(AE[P...P+9])

(i 0) = (0, k = (mem{a] + 5))

® p10=poo0AN(=0)A(C=
5)

® w21 =p10N(K=k)

® woo=pooAN(i=NA(u=
k x mem([a] 4 5)

® o33 =(MEM =
Mem) A (P = p)

read(K, MEM[A])
read(k, mema])

(I = 10)?
(i > 10y

(I <10 AK > 0) — (MEM[P + 1],) := (I * (MEM[A] + C) = K, | + 1)
(i < 10) — (memlp + 1), i) := (i * u, i + 1)

w33 = MEM[P] = mem|p]

CoVaC Tool
o

CoVaC Tool

The paper also mentions their tool which implements the theory presented. It's
written in C++ with a line count of about 7000 and was tested on the compilations
of LLVM. The tool was written with a two phase strategy in which they first use a
weaker InvGen (value numbering algorithm) and then use a stronger but slower
one (assertion checking via hoare logic) if that doesn’t work.

The tool was tested on programs like heapsort, binary search, print first N primes
etc along with the LLVM test suite. Even though LLVM optimized the code highly,
with on average 0.53 optmizations per line, CoVaC spent 1 second per 41 lines. The
assertion checker (which was the stronger InvGen) took the most time and was
invoked quite often (once per 8 lines).

	Introduction
	Formalisms
	Cross-Product
	Constructions
	CoVaC Tool

