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Compiler Verification

● Random testing effective but not perfect.
● Complete compiler verification and translation validations 

not practical for most real world use cases.
● Alive aims for a design point that is both practical and 

formal.
● Alive is a domain specific language for formally verifying 

some peephole optimizations in LLVM.



1. CS 6120: Provably Correct Peephole Optimizations with Alive. (2019, December 6)
https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/alive/



Syntax
● A transformation has form  precondition

source  template
=>
target template

● Syntax of templates resembles LLVM IR.
● Implements a subset of LLVM integer and pointer 

instructions.
● Does not support branches.



Type System
● Alive supports integers of any bitwidth till an upper 

limit(64, by default).
● Pointers, arrays and void also supported.
● Does not support floating point and aggregate types like 

vectors.
● Variables can be implicitly typed.
● Correctness checked for all feasible types according to 

the typing rules.



Undefined Behaviours
1. Undefined behaviour :- Anything may happen to program 

on its execution. Compiler may simply assume it does not 
occur.
It may occur due to out of bounds and unaligned memory
access.

2. Undefined value :- Mimics a free-floating register that can 
return any value each time it is read. Compiler may 
choose any possible value for optimization.



Undefined Behaviours
3. Poison Values :- 

Indicates that a side-effect free instruction produces 
undefined behaviour.
It defers true undefined behaviour till it is used by an 
instruction with side effects.
nuw, nsw, exact attributes may produce a poison value.



Checking correctness
● When undefined behaviours absent, we can just 

equivalence check for all possible values of inputs.
● In presence of undefined behaviours, we check

○ target is defined when source is defined.
○ target is poison free when source is defined and 

poison free.
○ source and target produce same result when source is 

defined and poison free.



Verification condition generation
For each instruction, Alive generates three SMT expressions
1. An expression for the result of the operation.
2. An expression representing constraints under which the 

instruction has defined behaviour.
3. An expression representing cases for which the instruction 

does not generate a poison value.
Definedness and poison-free constraints of an instruction are 
aggregates of its own constraints and those of its operands.



Verification condition generation
● undef values are encoded as a fresh SMT variable and 

added to a set U.
● Peephole optimizations make use of results of dataflow 

analyses through built-in predicates.
● These predicates are encoded using a fresh boolean 

variable p and a side constraint.
● If it is  an over-approximation constraint is p => s where s 

denotes the condition of the analysis. 



Verification condition generation
● Under-approximations are denoted as s => p . 

Eg. isPower2(%a) is encoded as p => a != 0 Λ (a&(a-1)==0)   
mayAlias(%a, %b) is a == b => p

● Results of precise analyses as encoded precisely.



Verification condition generation



Verification condition generation



Correctness criteria
    denotes preconditions.

   definedness constraints of source

   poison free constraints of source

   result of executing source instructions

  set of input variables

   set of fresh variables   for predicates 

            

 



Correctness criteria



Verification condition generation
To encode memory accesses, we create a variable to represent the 
pointer resulting from alloca.

1. It should be different than 0.
2. It must be properly aligned.
3. Enforce that the allocated memory range does not overlap with 

other allocated regions
4. Ensure that the allocated memory range does not wrap around 

the memory space.

These constraints are added to a set ɑ for each pointer.



Verification condition generation
● Load is encode using select and concat.

Eg. %v = load i16* %p becomes v = 
concat(select(m,p+1),select(m,p))

● Store is encoded using ite, store and extract.
Eg. store %v, %p becomes

ite(  , m’’, m), m’ = store(m,p,extract(v,7,0)), 
m’’ = store(m’, p+1, extract(v,15,8))



Verification condition generation
The array encoding we saw might be inefficient for SMT 
solvers so we use Ackermann’s expansion.

store(m,q,v) becomes ite(p=q, v,m)

Load instructions take the whole memory expression built 
so far recursively. 
select(m,q) becomes ite(q=p1, v1, ite (.....))



Attribute inference
● Difficult to decide when to place nsw, nuw, exact attributes 

in LLVM optimizations.
● Removing attributes in transformed code constraints 

subsequent optimization passes.
● If an optimization is correct without an attribute in source 

code, then it is also correct with it.
● If an optimization is correct with an attribute in target code, 

then it remains correct without it.



Attribute inference
● Alive can infer when it is safe to add attributes to target 

code or remove attributes from source code.
● Attributes only affect the poison free constraints so these 

constraints are generated conditionally based on 
presence or absence of attributes.

● A fresh boolean variable    is introduced for each 
instruction and for each attribute and poison free 
constraints become                         … 

●      denote the poison free condition when    is enabled. 



Attribute inference

Let        denote the set of all   variables in source and target 
respectively.

The disjunction of all models satisfying
gives the optimal set of attributes.



Attribute inference
Pseudocode:



Generating C++ code
● After a transformation has been proved correct, Alive can turn it into 

C++ code.
● The generated code can be linked into LLVM and used as an LLVM 

optimization pass.
● Code generator translates the source code into conditions using 

LLVM’s pattern matching library. If DAG of LLVM instructions 
matches and preconditions are met, the root instruction from the 
source is replaced by its counterpart in the target.

● Alive is parametric over types so if given constraints are not enough 
to unify types in a particular instruction, then conditions are inserted 
to check their equality in the C++ code generated.



Implementation
● Alive is implemented in Python and uses Z3 SMT 

solver.
● Typing constraints are over quantified or quantifier-free 

bitvector theories.
● Correctness constraints are negated before querying 

solver so for transformations without undefined values 
in source, we get quantifier-free formulas and formulas 
with single quantifier otherwise.



Evaluation
● Alive translated 334 out of 1028 InstCombine 

transformations.
● It was able to find 8 incorrect InstCombine 

transformations . 2 in AddSub and 6 in MulDivRem file.
● It was able to infer weaker precondition attributes and 

stronger postcondition attributes for 70 transformations.
● Transformations involving floating point cannot yet be 

expressed in Alive.



Incorrect Transformations

Transformation:
%a = sdiv %X, C
%r = sub 0, %a
  =>
%r = sdiv %X, -C

Example:
%X i4 = 0x8 (8, -8)
C i4 = 0x1 (1)
%a i4 = 0x8 (8, -8)
Source value: 0x8 (8, -8)
Target value: undef

Failed SMT query:
(set-info :status unknown)
(declare-fun C () (_ BitVec 4))
(declare-fun %X () (_ BitVec 4))
(assert
 (let (($x323 (and (distinct %X (_ bv8 4)) true)))
 (let (($x332 (or $x323 (and (distinct (bvneg C) (_ bv15 
4)) true))))
 (let ((?x329 (bvneg C)))
 (let (($x330 (and (distinct ?x329 (_ bv0 4)) true)))
 (let (($x348 (and $x330 $x332)))
 (let (($x326 (or $x323 (and (distinct C (_ bv15 4)) 
true))))
 (let (($x321 (and (distinct C (_ bv0 4)) true)))
 (and $x321 $x326 (not $x348))))))))))
(check-sat)



Incorrect Transformations

Example:
%X i4 = 0xF (15, -1)

C1 i4 = 0x3 (3)
C2 i4 = 0x8 (8, -8)
%s i4 = 0x8 (8, -8)
Source value: 0x1 (1)
Target value: 0xF (15, -1)

Transformation:
Pre: C2 % (1<<C1) == 0
%s = shl nsw %X, C1
%r = sdiv %s, C2
 =>
%r = sdiv %X, 
C2/(1<<C1)

Transformation:
%Op0 = lshr %X, C1
%r = udiv %Op0, C2
 =>
%r = udiv %X, C2 << C1

Transformation:
%Op1 =sub 0,%X
%r= srem %Op0, %Op1
=>
%r= srem %Op0, %X

Example:
%X i8 = 0x00 (0)

C1 i8 = 0x04 (4)
C2 i8 = 0x80 (128, -128)
%Op0 i8 = 0x00 (0)
Source value: 0x00 (0)
Target value: undef

Example:
%X i4 = 0xF (15, -1)

%Op0 i4 = 0x8 (8, -8)
%Op1 i4 = 0x1 (1)
Source value: 0x0 (0)
Target value: undef



Incorrect Transformations

Example:
%A i4 = 0x8 (8, -8)
%x i4 = 0xA (10, -6)
%B i4 = 0x8 (8, -8)
Source value: 0x2 (2)
Target value: poison

Transformation:
%B = sub 0, %A
%C = sub nsw %x, %B
 =>
%C = add nsw %x, %A

Transformation:
Pre: isPowerOf2(C1)
%r= mul nsw %x, C1
 =>
%r= shl nsw %x, log2(C1)

Transformation:
Pre: !WillNotOverflowSignedMul(C1, C2) 
%Op0 = sdiv %X, C1
%r= sdiv %Op0, C2
=>
%r = 0

Example:
%x i4 = 0x1 (1)
C1 i4 = 0x8 (8, -8)
Source value: 0x8 (8, -8)
Target value: poison

Example:
%X i9 = 0x100 (256, -256)
C1 i9 = 0x100 (256, -256)
C2 i9 = 0x1FF (511, -1)
%Op0 i9 = 0x001 (1)

Source value: 0x1FF (511, -1)
Target value: 0x000 (0)



Incorrect Transformations
Example:
%Power i4 = 0x8 (8, -8)
%A i4 = 0x0 (0)

%B i4 = 0x1 (1)
%X i4 = 0x0 (0)
%s i4 = 0x8 (8, -8)
%Y i4 = 0x4 (4)
%sub i4 = 0xF (15, -1)
Source value: 0x0 (0)
Target value: undef

Transformation:
Pre: isPowerOf2(%Power) && hasOneUse(%Y)
%s= shl %Power, %A
%Y= lshr %s, %B
%r= udiv %X, %Y
 =>
%sub = sub %A, %B
%Y = shl %Power, %sub
%r = udiv %X, %Y



Conclusion
● Compiler LLVM+Alive was made by replacing 

InstCombine optimizer from LLVM with the C++ generated 
by Alive for the transformations.

● Compilation with -O3 flag using LLVM+Alive was on an 
average 7% faster than LLVM on SPEC 2000 and SPEC 
2006.

● Execution time was 3% slower than LLVM with O3.
● These may be because Alive runs only a fraction of 

InstCombine instructions.



Conclusion

Figure reports the number of times that each optimization fired during compilation of 
the LLVM nightly test suite and SPEC bench- marks using LLVM+Alive at -O3. Alive 
optimizations fired about 87,000 times in total. The top ten optimizations account for 
approximately 70% of the total invocations and there is a long tail of 
infrequently-used optimizations.


