
Undefined Behaviour
Advanced Compiler Techniques

Source:
https://www.youtube.com/playlist?list=PLf3ZkSCyj1tf3rPAkOKY5hUzDrDoekAc7
Videos: 166 - 170

1

https://www.youtube.com/playlist?list=PLf3ZkSCyj1tf3rPAkOKY5hUzDrDoekAc7

Module 166
Undefined Behaviour Semantics

2

What is undefined behaviour?

● For some statements (for instance divide by 0), the behaviour is not logically
well defined.

● The language designer may choose to define this behaviour (for example, in
languages such as Java and Python, an exception may be generated), or
they may choose to leave it undefined (for example, C/C++).

3

What happens if is such behaviour is left undefined?

● The code may behave differently on different machines.
● The exact implementation decides what will happen. The language provides

no guarantees about the behaviour.
● Example: The compiler may leave it up to the assembler to handle the

undefined behaviour.
● Example: The hardware may crash the machine if such behaviour is

triggered.
● Example: The hardware may simply ignore such instructions (effectively

replacing the instruction by a nop)

4

Cost of handling undefined behaviour

● Consider an illegal memory access (for instance, due to an out of range
index).

● The language may choose to define such behaviour by adding explicit checks
and throwing exceptions if they fail. Such checks will add 3-4 instructions to
the code for every access.

● Some other languages may say that such cost is not justified as the
programmer's are not likely to make such mistakes.

● Allowing undefined behaviour may lead to security vulnerabilities.

5

Exploiting UB: Overflows

Is this legal? (Hint: Think about overflows)

int n = ...;
for(int i = 0; i < n+1; i++)
 // Some code

int n = ...;
for(int i = 0; i <= n; i++)
 // Some code

6

Exploiting UB: Overflows

What if n = INT_MAX and we have wrap around semantics?

In such a case, the transformation is illegal as both the pieces of code do different
things.

int n = ...;
for(int i = 0; i < INT_MAX+1; i++)
 // Some code

int n = ...;
for(int i = 0; i <= INT_MAX; i++)
 // Some code

7

Exploiting UB: Overflows

What if signed overflow was UB?

In this case, this is a perfectly legal transformation as the compiler no longer
specifies the correct behaviour.

UB allows for optimizations!

int n = ...;
for(int i = 0; i < n+1; i++)
 // Some code

int n = ...;
for(int i = 0; i <= n; i++)
 // Some code

8

Exploiting UB: Type Aliasing

Legal? What if b[i] aliases with a?

void foo(int *a, float *b)
{
 for(int i = 0; i < N; i++)
 b[i] = *a;
}

void foo(int *a, float *b)
{
 int local_a = *a;
 for(int i = 0; i < N; i++)
 b[i] = local_a;
}

9

Exploiting UB: Type Aliasing

Legal if we assume type based strict aliasing.

void foo(int *a, float *b)
{
 for(int i = 0; i < N; i++)
 b[i] = *a;
}

void foo(int *a, float *b)
{
 int local_a = *a;
 for(int i = 0; i < N; i++)
 b[i] = local_a;
}

10

Exploiting UB: Based Variables

Legal? What if n >= 257 and A[256] aliases with B[0]?

int A[256];
int B[1];

void foo(int n)
{
 int *p = A;
 for(int i = 0; i < n; i++, p++)
 *p += b[0];
}

int A[256];
int B[1];

void foo(int n)
{
 int *p = A;
 int local_b = b[0];
 for(int i = 0; i < n; i++, p++)
 *p += local_b;
} 11

Exploiting UB: Based Variables

Legal if p is based on A, i.e. p never goes out of A’s allocated memory region.

int A[256];
int B[1];

void foo(int n)
{
 int *p = A;
 for(int i = 0; i < n; i++, p++)
 *p += b[0];
}

int A[256];
int B[1];

void foo(int n)
{
 int *p = A;
 int local_b = b[0];
 for(int i = 0; i < n; i++, p++)
 *p += local_b;
} 12

UB in IR

● Signed overflows in LLVM are UB.
● If the source language is not C/C++, the frontend will add explicit checks in IR

while generating code.
● Some instructions can have multiple flavours to handle different UB

semantics.

x = add y, z
x = add nsw y, z // UB if signed overflow
x = add nuw y, z // UB if unsigned overflow

13

Module 167
Undefined Behaviour in IR

14

UB in source and target

● UB in a source usually provides opportunities for optimizations.
● UB in target may cause issues as from the correctness perspective, the

compiler cannot add more non-determinism.

15

When does UB reduce optimization opportunities?

Valid?

16

When does UB reduce optimization opportunities?

What if x = INT_MAX and
overflow is UB?
If c = false, left never triggers
UB but right always does.

17

UB may limit optimizations

18

UB may limit optimizations

Invalid as right always
triggers UB, whereas left
only triggers UB is
while’s condition is true

19

UB in source and target

● UB in source enables optimizations.
● UB in targets hinders optimizations.
● Ideally, the source has lots of UB and the target has no UB.
● IR designer has to find a middle ground.

20

Module 168
Poison Values

21

What are poison value semantics?

● If a program as UB, anything can happen.
● Out all such possibilities, we pick the possibility of generating an error. This is

called a poison value.
● Example: If x = a + b and the addition overflows, instead of classifying this

statement as UB, we simply assign an error variable to x.

22

How does poison value help?

In this case, y is assigned a
poison value. Since y is never
used again, this is a valid
transformation

23

How does poison value help?

Under poison value overflow
semantics, this is a valid
transformation. If c is false,
then the target never uses y1.

24

Operations on poison value

25

Legal?

Operations on poison value: Option 1

26

No!
z = y/2
triggers UB

Operations on poison value: Option 2

27

Operations on poison value

● Option 2 is preferable as it allows for more optimizations.

28

(x1 op x2) may generate a poison value if
any of the arguments is a poison value.
A poisoned value poisons the rest of the
computation.

Should we allow this transformation?

What if the hardware is designed to terminate the program on divide-by-zero? In
this case the target will always get terminated. Such a transform is NOT sound.

29

Why did this happen?

● Divide by zero is more dangerous than other transforms. If we hoist the
computation out of the loop, the program will surely terminate (due to
hardware semantics).

● Therefore in some cases, operations on poison values can result in UB.
● Ops which trigger dangerous behaviour (such as termination) should trigger

UB.
● Ops which don’t generate dangerous behaviour (they may merely result in

incorrect computation), should return poison values.

30

Poison value semantics

31

Module 169
Poison Value Operational Semantics

32

Guiding Principle

● If a poison value exists, then the original program had UB. Therefore any
choice is valid from the correctness point of view.

● However, we want to choose a behaviour which maximize optimization
opportunities.

33

Poison Value Semantics

34

Poison Value Semantics

● All of these return poison values.
● ANDing poison with 0 could have been defined as 0. However, a poison value

is more general than 0. Moreover, a poison value can always be converted to
0.

● Poison value is more flexible.
● As long as the operation does not generate a dangerous behaviour, returning

a poison value maximizes optimization opportunities.

35

Branch semantics in the presence of poison values

36

Branch semantics in the presence of poison values

● We can non-deterministically choose one of the branch. However, this can
make the rest of the analysis difficult.

● We can make every instruction in both the branches nops. This may not
always make logical sense.

● We may use information from other passes (if available) to make a decision.
Example: if the compiler can prove that x is either 0 or poison, then always
picking the else branch may be optimal.

● There is no clear choice. Hence, LLVM defines such cases as UB.

37

The compiler marks such branches as unreachable

38

When is this sub-optimal? Example 1

39

When is this sub-optimal? Example 2

40

Memory accesses with poison values

● If the data is poison but the address is not, then store poison value in the
memory. Reading from the same location will then return a poison value.

41

*x = p; // Store a poison value
y = *x; // y now has a poison value

Memory accesses with poison values

● If the address is poison, trigger UB.

42

*p = x; // UB
y = *p; // UB

Poison values and cost of UB

● Everytime we define a poison value operation semantic as UB, we reduce the
optimization opportunities.

● For example, if an instruction triggers UB, it cannot be hoisted out of the loop.
● Some opcodes have constrained motion (for example division by poison),

whereas others have unconstrained motion.

43

Converting poison values to deterministic values

● From a correctness standpoint, it is valid to determinize poison values.
● However, it reduces the opportunities for optimizations. Therefore, compiler

typically avoid such operations.

44

Module 170
Immediate v/s Deferred UB

45

Immediate vs Deferred UB

● In some cases LLVM will immediately generate UB, whereas in other cases, it
generates a poison value.

46

Example C LLVM

int y = INT_MAX + 1; Immediate UB Poison Value

int y = x / 0; Immediate UB Immediate UB

int y = x + <poison value>; - Poison Value

if(<poison value>) {…} else {...} Immediate UB Immediate UB

Immediate vs Deferred UB

● If poison value is never used in a dangerous operation, we can avoid UB.
● Therefore poison values are a form of deferred UB.

47

Thanks!
- Setu Gupta

48

