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Section 1

Introduction
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Motivation

Disconnect between Industrial Tools and Academic Theory
Sound program logics for reasoning about correctness. But code is
seldom correct!
Industrial automated reasoning tools often find bugs

Q: Can reasoning about the presence of bugs be underpinned by
sound techniques in a principled logical system?

“Reimagine” static-analysis tools
Provide symbolic bug-catchers a principled basis

A: Underapproximate Reasoning! (What is that?)
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Underapproximation

Hoare Logic Specification:
{pre-condition} code {post-condition}

post-condition ⊇ strongest-postcode (pre-condition)
Incorrectness Logic Specification:

[presumption] code [result]
result ⊆ strongest-postcode (presumption)

Have separate post-assertions for errors, normal termination
Assertions describe erroneous states that can be reached by actual
program executions
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Underapproximation (but picture)

We obtain a logic which can be used to prove the presence of bugs,
but not their absence.

Figure 1: Source: Incorrectness Logic Paper

‘Hoare triples speak the whole truth, where the under-approximate triples
speak nothing but the truth.’

https://dl.acm.org/doi/10.1145/3371078
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Section 2

A Unified Picture (Of Correctness and
Incorrectness)
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Category-Theoretic Notion

Figure 2: Commuting Diagram (Source : Incorrectness Logic Paper)

Predicates ≈ 2Program States, arrows ≈ binary relations on Predicates

post(c) is a function, the other two are non-functional

[−]c[−] = post(c); ⊇ and {−}c{−} = post(c); ⊆

post(c)p = strongest post of p = weakest under-approximating post
of p

https://dl.acm.org/doi/10.1145/3371078
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Reasoning Principles - I

Figure 3: Correctness & Incorrectness Principles (Source : Incorrectness Logic
Paper)

[p]c[q ∨ r ] =⇒ [p]c[q] allows you to drop paths going forward.
Not possible in overapproximate logics - but can forget information
along each path

Rules of consequence allow specifications to be adapted to broader
contexts

https://dl.acm.org/doi/10.1145/3371078
https://dl.acm.org/doi/10.1145/3371078
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Reasoning Principles - II

Figure 4: Correctness & Incorrectness Principles (Source : Incorrectness Logic
Paper)

Figure 5: Analogy with Testing (Source : Incorrectness Logic Paper)

Program testing works on the principle of denial (traditionally,
|u| = |u′| = 1, a test run)

https://dl.acm.org/doi/10.1145/3371078
https://dl.acm.org/doi/10.1145/3371078
https://dl.acm.org/doi/10.1145/3371078
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Isn’t Incorrectness Just Not Correctness?

Yes, but we aren’t powerful enough to precisely compute either!

’The inability to prove an over-approximate spec (whether found by a
tool or specified by a human) does not imply an error in a program,
and neither does not having found a bug imply that there are none:
thus, the need for dedicated techniques for each.’
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Section 3

Build Your Muscle
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Under-Approximating Triples - I

[z = 11]

if (x is even) {
if (y is odd) {

z = 42;
}

}

[z = 42]

This triple does not hold! The state [z : 42, x : 1, y : 3] has no
predecessor!
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Under-Approximating Triples - I

[z = 11]

if (x is even) {
if (y is odd) {

z = 42;
}

}

[z = 42]

This triple does not hold! The state [z : 42, x : 1, y : 3] has no
predecessor!
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Under-Approximating Triples - II

[true]

if (x is even) {
if (y is odd) {

z = 42;
}

}

[z = 42]

This triple holds!
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Under-Approximating Triples - II

[true]

if (x is even) {
if (y is odd) {

z = 42;
}

}

[z = 42]

This triple holds!
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Under-Approximating Triples - III

[z = 11]

if (x is even) {
if (y is odd) {

z = 42;
}

}

[z = 42 ∧ (x is even ) ∧ (y is odd )]

This triple holds!
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Under-Approximating Triples - III

[z = 11]

if (x is even) {
if (y is odd) {

z = 42;
}

}

[z = 42 ∧ (x is even ) ∧ (y is odd )]

This triple holds!
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Under-Approximating Triples - IV

[true]

if (x is even) {
if (y is odd) {

z = 42;
}

}

[z = 42 ∧ (x is even ) ∧ (y is odd )]

This triple holds!
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Under-Approximating Triples - IV

[true]

if (x is even) {
if (y is odd) {

z = 42;
}

}

[z = 42 ∧ (x is even ) ∧ (y is odd )]

This triple holds!
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Specifying Incorrectness

Reasoning about errors?

Have separate result-assertion forms for normal and (erroneous or
abnormal) termination.

void foo(char * str)
/* presumes: [ *str[]==s ]

achieves: [ er: *str[]==s && length(s) > 16 ] */
{

char buf[16];
strcpy(buf,str);

}

int main(int argc, char *argv[])
{ foo(argv[1]); }

Spec: if the length of the input string is greater than 16 then we can
get an error (in this case a buffer overflow).
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Specifying Incorrectness
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Under-approximate Success

Why not over-approximate for successful and under-approximate for
erroneous termination?

Under-approximate result assertions describing successful
computations can help us soundly discover bugs that come after a
procedure is called.

void mkeven()
/* presumes: [true], wrong achieves: [ok: x==2 || x==4] */
{ x=2; }

void usemkeven()
{ mkeven(); if (x==4) {error();} }

We don’t want false positives!
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Under-approximate Success
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Section 4

Proof System
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Setup
Simple imperative language. error() halts execution and raises an
error signal, er.

Abnormal control flows impact reasoning about sequential
composition

Solution: associate assertions with a set of exit conditions ϵ
ϵ includes (at least) ok for normal termination and er causes by
error()

[p]C [ϵ : q] = q under-approximates the states when C exits via ϵ
starting from states in p.

x is not free in p iff σ ∈ p ⇐⇒ (∀v . (σ|x 7→ v) ∈ p). [BUG]

Treat p, q semantically (i.e., any ⊆ Σ, the set of program states) –
don’t fix a language.

By treating assertions semantically, we are essentially appealing to
mathematics (or set theory) as an oracle in our proof theory when we
use =⇒ in proof rules.

[p]C [ok : q][er : r ] as shorthand for [p]C [ok : q] and [p]C [er : r ].
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Generic Proof Rules - I

Figure 6: Generic Proof Rules of Incorrectness Logic (Source: Incorrectness
Logic Paper)

https://dl.acm.org/doi/10.1145/3371078
https://dl.acm.org/doi/10.1145/3371078
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Generic Proof Rules - Axioms

Valid across different models of states and commands
Usual: States = Variables → Values and Commands = Binary
Relations on States
Others based on traces, separation logic etc.

Assume
[p]assumeB[ok : p ∧ B][er : false]

Skip
[p]skip[ok : p][er : false]

Empty under-approximates
[p]C [ϵ : false]

assume(B) statement : B is a Boolean expression, can be from an
otherwise-unspecified first-order logic signature.

Axioms for assume and skip : give the expected assertions for
normal termination, but specify false (the empty set of states) for
abnormal.
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Generic Proof Rules - Consequence, Disjunction & Choice

Consequence
p′ ⇐= p [p]C [ϵ : q] q ⇐= q′

[p′]C [ϵ : q′]

Disjunction
[p1] C [ϵ : q1] [p2] C [ϵ : q2]

[p1 ∨ p2] C [ϵ : q1 ∨ q2]

Choice (where i = 1, 2)
[p] Ci [ϵ : q]

[p] C1 + C2 [ϵ : q]
The rule of consequence lets us enlarge (weaken) the pre and shrink
(strengthen) the post-assertion.

Allows us to drop disjuncts in the post and drop conjuncts in the pre.
‘Enlarging the pre was used in the Abductor tool ([Calcagno et
al. 2011], which led to Facebook Infer), when guessing pre-conditions
in programs with loops.’

Was unsound in the over-approximating logic used there, required a
re-execution step which filtered out unsound pre-conditions

https://www.researchgate.net/publication/220431326_Compositional_Shape_Analysis_by_Means_of_Bi-Abduction
https://www.researchgate.net/publication/220431326_Compositional_Shape_Analysis_by_Means_of_Bi-Abduction
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Generic Proof Rules - Sequencing and Iteration

Sequencing(short-circuit) Sequencing(normal)

[p] C1 [er : r ]
[p] C1; C2 [er : r ]

[p] C1 [ok : q] [q] C2 [ϵ : r ]
[p] C1; C2 [ϵ : r ]

Iterate zero Iterate non-zero

[p] C∗ [ok : p]
[p] C∗; C [ϵ : q]

[p] C∗ [ϵ : q]
The Iterate zero rule shows that any assertion is a valid
under-approximate invariant for Kleene iteration.

Loop invariants don’t play a central role in under-approximate
reasoning. Notion of subvariants mentioned in POPL’23 tutorial.

The Iterate non-zero rule uses C∗; C rather than C ; C∗ to help
reasoning about cases where an error is thrown inside an iteration.
Will see an example later.

http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/POPL23TutorialSemanticsPart.pdf
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Generic Proof Rules - Derived Choice and Iteration,
Backwards Variant

Derived Unrolling Rule Derived Rule of Choice

[p] C i [ϵ : qi ] , all i ≤ bound
[p] C∗ [ϵ :

∨
i≤bound qi ]

[p] C1 [ϵ : q1] [p] C2 [ϵ : q2]
[p] C1 + C2 [ϵ : q1 ∨ q2]

One of the things that iteration can do is execute its body i times.

The Unrolling rule gives a similar capability symbolic bounded model
checking (but we need the Backwards Variant rule too in general).

Backwards Variant (where n fresh)
[p(n) ∧ nat(n)] C [ϵ : p(n + 1) ∧ nat(n)]

[p(0)] C∗ [ϵ : ∃n . p(n) ∧ nat(n)]
p(.) = a parameterized predicate (a function from expressions to
predicates).
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Backwards Variant relation with Program Termination

[presumption] c [ϵ : result] expresses a reachability property that
involves termination.

Every state in the result is reachable from some state in the
presumption.

But this does not imply that a loop must terminate on all executions!
Enough paths terminate to cover all the states in result, while other
paths may diverge.

Backward variant rule is similar to proof rules for proving program
termination (typically use a “variant” that decreases on each loop
iteration)

But reflects the backward nature of this property. p goes down when
executing backwards.

What about the forward variant? [∃n . p(n) ∧ nat(n)] C∗ [ok : p(0)].

It is always true :)
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Reachability and Liveness

Liveness : “something (good) will eventually happen”.

Our reachability property:
Backwards: For every state in the result, it is possible to eventually
reach a state in the pre by executing backwards.

Forwards: If we explore (enumerate pre-states, backtrack, dovetail)
executions from all pre-states, then eventually any given state in the
result will be encountered.

The “eventually” in our forwards does not concern all paths, rather it
is an “existential liveness property”.

The over-approximating triple {pre}C{post} describes a safety
property, that “nothing bad (= not post) will happen”.
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Specific Proof Rules - Variables and Mutation

Figure 7: Rules for Variables and Mutation (Source: Incorrectness Logic Paper)

Sound when states are functions of type Variables → Values.

Mod(C) is the set of variables modified by assignment statements in
C , and Free(r) is the set of free variables in an assertion r .

e and nondet() are syntactically distinct.
e is an expression built up from a first-order logic signature, can
appear within assertions, and is side-effect free.
nondet() does not appear in assertions.

https://dl.acm.org/doi/10.1145/3371078
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Specific Proof Rules - Variables and Mutation

Figure 8: Rules for Variables and Mutation (Source: Incorrectness Logic Paper)

Sound when states are functions of type Variables → Values.

Mod(C) is the set of variables modified by assignment statements in
C , and Free(r) is the set of free variables in an assertion r .

e and nondet() are syntactically distinct.
e is an expression built up from a first-order logic signature, can
appear within assertions, and is side-effect free.
nondet() does not appear in assertions. [BUG] in Nondet
Assignment rule

https://dl.acm.org/doi/10.1145/3371078
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Specific Proof Rules - Assignment

Incorrectness logic uses Floyd’s forward-running assignment axiom
rather than Hoare’s backwards-running one.

Assignment
[p] x = e [ok : ∃x ′ . p[x ′/x ] ∧ x = e[x ′/x ]] [er : false]

Would the below rule be correct?

Assignment’
[p[e/x ]] x = e [ok : p] [er : false]

No! For example, [y == 42] x = 42 [ok : x == y ] is not valid (take
the post-state [x : 3, y : 3]).
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Specific Proof Rules - Substitution, Constancy, & Local
Variable Rule

Substitution I Constancy
(Free(e) ∪ {x}) ∩ Free(C) = ∅ Mod(C) ∩ Free(f ) = ∅

[p] C [ϵ : q]
([p] C [ϵ : q])(e/x)

[p] C [ϵ : q]
[p ∧ f ] C [ϵ : q ∧ f ]

Substitution II Local Variable
y ̸∈ Free(p, C , q) y ̸∈ Free(p, C)

[p] C [ϵ : q]
([p] C [ϵ : q])(y/x)

[p] C(y/x) [ϵ : q]
[p] local x . C [ϵ : ∃y . q]

The rules of Substitution, Constancy & Consequence are important
for adapting specifications for use in different contexts.
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Exercise: Derive rules for assert

Recall assert(B) = assume(B) + (assume(!B) ; error())

[p ∧ B] assert(B) [ok : (p ∧ B)] [er : false]

[p ∧ ¬B] assert(B) [ok : false] [er : (p ∧ ¬B)]

[p] assert(B) [ok : (p ∧ B)] [er : (p ∧ ¬B)]
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Section 5

Reasoning with the Logic
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Setup

Examples motivated by existing tools, but “we are not claiming at
this time that incorrectness logic leads to better practical results than
these mature tools”

‘A basic test of a potential foundational formalism is how it expresses
a variety of patterns that have arisen naturally.’

No formal treatment of procedures. Assume summary-like hypotheses
for reasoning.

[p] foo() [ok : q] [er : r ] ⊢ [p′] C [ok : q′] [er : r ′]

Principle of reuse: Reason about foo()’s body once, don’t revisit at
call sites (aka summary-based analysis - COL729 throwback)
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loop0 - I
void loop0() {

/* (default presumes is "true" when not specified)
* achieves: [ok: x>=0 ] */

int n = nondet();
x=0;
while (n > 0) {

x = x + n;
n = nondet();

}}

void client0() { /* achieves: [er: x==200000] */
loop0();
if (x == 200000) error(); }

Assuming loop0 summary, can prove client0 spec using below
followed by sequencing rule.

[true] loop0() [ok : x ≥ 0] x ≥ 0 ⇐= x == 200000
[true] loop0() [ok : x == 200000]
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loop0 - II

How to prove loop0() spec?

Just unroll once! Then apply Local Variable rule + Unrolling rule +
Rule of Consequence.

[ x==0 ]
if (n>0) {

[ x==0 && n>0 ]
x = x+n; n = nondet(); [ x>0 ]

} else
{ [ x==0 && n<=0 ] skip;
}
[ x>0 || (x==0 && n<=0) ]

assume (n<=0);
[ (x>0 && n<=0) || (x==0 && n<=0) ]

[ ok: x>=0 && n<=0 ]
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loop0 - II

How to prove loop0() spec?

Just unroll once! Then apply Local Variable rule + Unrolling rule +
Rule of Consequence.

[ x==0 ]
if (n>0) {

[ x==0 && n>0 ]
x = x+n; n = nondet(); [ x>0 ]

} else
{ [ x==0 && n<=0 ] skip;
}
[ x>0 || (x==0 && n<=0) ]

assume (n<=0);
[ (x>0 && n<=0) || (x==0 && n<=0) ]

[ ok: x>=0 && n<=0 ]
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loop1 - I

void loop1()
/* achieves1: [ok: x==0 || x==1 || x==2]

achieves2: [ok: x>=0] */
{ x = 0;

Kleene-star {
x = x + 1;

} }

void client1()
/* achieves: [er: x==200000] */
{ loop1();

if ( x==200000 ) error();
}
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loop1 - II

Infinitely many paths through loop1(), and the loop is not
guaranteed to terminate.

Unrolling rule: post-conditions for any finite-depth unrollings of the
loop. achieves1==2 unrollings.

Not enough to trigger the error in client1(). (Unroll 200000
times?)

Need the backwards variant rule!

n fresh
[x == n ∧ nat(n)] x = x + 1 [ok : x == n + 1 ∧ nat(n)]

[x == 0] (x = x + 1)∗ [ok : ∃n . x == n ∧ nat(n)]
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loop2 - I

Error inside iteration: This is why we need C∗; C , not C ; C∗!
void loop2()
/* achieves: [er: x==200000] */
{ x = 0;

Kleene-star{
if (x==200000) error();
x = x + 1;

} }

How can we show this?
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loop2 - II

Use Backwards Variant rule (p(n) = 0 ≤ x ≤ 200000 ∧ x == n).

[x == 0] (Body)∗ [ok : 0 ≤ x ≤ 200000]

[x == 0] (Body)∗ [ok : x == 200000]

Assume + Error + Sequencing + Short-Circuit gives us

[x == 200000] Body [er : x == 200000]

Sequencing

[x == 0] (Body)∗; Body [er : x == 200000]

Iterate non-zero

[x == 0] (Body)∗ [er : x == 200000]
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loop2 - II
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loop2 - II
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[x == 0] (Body)∗ [er : x == 200000]
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loop3

What if we used C ; C∗? The proof for loop2() spec would have
200000 applications of Sequencing.

void loop3()
/* achieves: [er: \exists n (x==n /\ n <= 200000)] */
{ y = nondet();

x = 0;
Kleene-star {

if (y == 200000) error();
x = x + 1;
y = y + 1;

} }

We don’t know the number of iterations it’ll take to get an error, and
cannot prove the er assertion with finitely many unrollings.

But we can be cool and use Backwards Variant to derive more
general under-approximate assertions than unrolling, and use the
original Iterate non-zero to derive an error from the general assertion
(with just one C statement).
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Conditionals

Use of Boolean conditions that are difficult for current theorem
provers to deal with causes expressiveness issues.

E.g. multiplication goes beyond the decidable subsets of arithmetic
encoded in automatic theorem provers.

How do tools deal with this? And how can Incorrectness Logic deal
with this?
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Conditionals - Approach I
int difficult(int y)
{ return (y*y); /* or hash(y) or obfuscated code */
}

void client()
/* achieves1 : [ok: y==49 && x==1] */
{ int z = nondet();

if (y == difficult(z))
x=1;

else
x=2;

}

Pragmatic Approach from Dynamic Symbolic Execution: Concretize
symbolic variables. (replace z with 7).

Do this in incorrectness logic by shrinking the post. Have [y==z*z]
assume(y==difficult(z)) [ok: y==z*z] and
y == z ∗ z ⇐= y == z ∗ z ∧ z == 7.
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Conditionals - Approach II
void client()
/* achieves2 : [ok: exists z . (y==difficult(z) && x==1)

|| (y!=difficult(z) && x==2)] */
{ int z = nondet();

if (y == difficult(z))
x=1;

else
x=2;

}

void test1()
/* achieves: [er: exists z .

(y==difficult(z) && x==1)
|| (y != difficult(z) && x==2)] */

{ client(); if (x==1 || x==2) error();
}

Record information lazily (hoping difficulty won’t matter, like in
test1()).
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Conditionals - Approach III
void client()
/* achieves3 : [ok: x==1 || x==2] */
{ int z = nondet();

if (y == difficult(z))
x=1;

else
x=2;

}

void test2()
{ client(); if (x==2) error(); }

Record disjuncts for both branches, but discard the difficult bits.
Unsound! (e.g. [x:1, y:3] not reachable).

Used for pragmatic reasons in tools like SMART, Infer.RacerD.

RacerD: it is an under-approximation of an over-approximation, where
the over-approximation arises by replacing Booleans it doesn’t
understand with nondeterministic choice.
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Tool Design Insights

Infer.RacerD: Tools can make localised unsound decisions, which
act as assumptions for further sound steps.

‘From this perspective, the role of logic is not to produce iron-clad
unconditional guarantees, but is to clarify assumptions and their role
when making sound inferences.’

Infer.Pulse: 20 disjuncts case was ~2.75x wall clock time faster,
~3.1x user time faster, and found 97% of the issues that the 50
disjuncts case found.

Choice is not binary! E.g., deploy fast one at code review time, slow
one later in the process.
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Flaky Tests - I

“flaky test” : due to nondeterminism, can give different answers on
different runs.

If π is a program path, then
wp(π)q: States for which execution of π is guaranteed to terminate
and satisfy q.
wpp(π)q: States for which execution of π is possible to terminate and
satisfy q.

We will use these to obtain pre-assertions, then use forward reasoning
to obtain under-approximate post-assertions.

Why do we need these?
Because strongest under-approximate presumptions do not exist in
general (see 5.2 in paper).
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Flaky Tests - II
void foo()
/* sturdy pre [x is even], ach [er: x is even][ok: false]

flaky pre [x is odd], ach [er: x is odd][ok: x is odd] */
{

if (x is even) error();
else { if (nondet()) skip; else error(); }

}

void flakey_client()
/* flaky achieves: [er: x==3 || x==5] */
{ x = 3;

foo();
x = x+2;
assert(x==4);

}

Use wp(assume(x is even)) true for sturdy presumes,
wpp(assume(x is odd); b = nondet(); assume(b)) true (where b
is local) for flaky presumes.

A proof of incorrectness can be checked repeatedly in a deterministic
fashion. (unclear if this helps)
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Reasoning about Procedures - I

For a path without procedure calls - say a sequential composition of
assignment, assume and assert statements

Can perform strongest post-condition reasoning, which is also
under-approximate.

Can combine together pre/post pairs for a number of paths to get an
under-approximate summary for a procedure.

But then using that summary to reason (soundly) about a path
containing a procedure call is subtle.

Even in straight-line code, it is easy to get a false positive using
strongest post-condition reasoning with Hoare logic.
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Reasoning about Procedures - II
void inc()
/* presumes1: [x>=0], achieves1: [ok: x>0]

presumes2: [x==m && m>=0], achieves2: [ok: x==m+1 && m>=0] */
{ assert(x>=0);

x=x+1;
}

void client()
/* presumes1: [x>=0], wrong achieves1: [ok: x>0]

presumes2: [x==m && m>=0], achieves2: [ok: x==m+2 && m>=0] */
{ inc(); inc(); }

void test()
/* wrong achieves1: [er: x==1]

achieves2: [er: false] */
{ x = 0;

client();
assert(x>=2);

}



Introduction A Unified Picture (Of Correctness and Incorrectness) Build Your Muscle Proof System Reasoning with the Logic Appendix

Reasoning about Procedures - III

Incorrectness logic prevents the unsound (for bug catching) inference
presumes1/achieves1 for client() and thus test().

A different spec of inc(), given by presumes2/achieves2, lets us
reason about the composition inc();inc() in client() more
positively, to obtain presumes2/achieves2 as stated for client().

Note: A procedure spec or summary should carry information about
free variables and modified - for inc(), x is free and modified, m is
not free in the procedure body.

This allows us to apply rules of Substitution and Constancy to get
client() spec from inc() spec.
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Context and Conclusions
‘The theory Infer was based on originally . . . does not match its use
to find bugs rather than to prove their absence.’

Led to RacerD, Pulse program analysers.

A more general theory of “incorrectness” logic (starting from reverse
Hoare logic by de Vries and Koutavas in 2011).

Related theoretical notions: wlp (weakest liberal precondition), wpp
(weakest possible precondition), dynamic logic.

Each form of reasoning is as fundamental as the other, they just have
different principles. Recall:
For correctness reasoning, you get to forget information as you
go along a path, but you must remember all the paths. For
incorrectness reasoning, you must remember information as you
go along a path, but you get to forget some of the paths.

Possible extensions to other models, concurrency. Possible reuse of
work from termination proving.

Thank You!
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Section 6

Appendix



Introduction A Unified Picture (Of Correctness and Incorrectness) Build Your Muscle Proof System Reasoning with the Logic Appendix

Backwards Variant - Example I

For any fixed number of iterations, we can just unfold the Iterate
non-zero rule and use Iterate zero. But no. of iterations may be
unknown!

x = 0;
y = nondet();
while (y != N) do {

y = y + 1;
x = x + 1;

}

[x = 0] while (y != N) do y = y + 1; x = x + 1 [ok : ∃n . x == n ∧ nat(n)]
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Backwards Variant - Example II

void loop3()
/* achieves: [er: x == 200000] */
{ x = nondet();

Kleene-star {
if (x == 200000) error();
x = x + 1;

} }

Can guess a value k returned by nondet() and apply Sequencing
200000 − k times. Or

Can be cool and use Backwards Variant to derive more general
under-approximate assertions than unrolling, and use the original
Iterate non-zero to derive an error from the general assertion (with
just one C statement).
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